skip to content
 

Anonymization of high-dimensional datasets

Presented by: 
Grigorios Loukides Cardiff University
Date: 
Thursday 8th December 2016 - 15:30 to 16:00
Venue: 
INI Seminar Room 1
Abstract: 

Organizations collect increasing amounts of high-dimensional data about individuals. Examples are health record datasets containing diagnosis information, marketing datasets containing products purchased by customers, and web datasets containing check-ins in social networks. The sharing of such data is increasingly needed to support applications and/or satisfy policies and legislation. However, the high dimensionality of data makes their anonymization difficult, both from an effectiveness and from an efficiency point of view. In this talk, I will illustrate the problem and briefly review the main techniques used in the anonymization of high-dimensional data. Subsequently, I will present a class of methods we have been developing for anonymizing complex, high-dimensional data and their application to the healthcare domain. 

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons