skip to content

Networks as signals: Extraction of dynamical network structures

Presented by: 
Pierre Borgnat ENS - Lyon, CNRS (Centre national de la recherche scientifique)
Wednesday 14th December 2016 - 14:00 to 14:45
INI Seminar Room 1
Joint work with Ronan Hamon (LIF, Marseille, France), P. Flandrin (CNRS, LP, ENS de Lyon, France) and C. Robardet (LIRIS, INSA de Lyon, France)
We have proposed  a new framework to track the structure of temporal networks, using a signal processing approach: the method is based on the duality between static networks and signals using a multidimensional scaling technique. For temporal networks, it enables a tracking of the network structure over time. To extract the most significant patterns of the networks and their activation over time, we use nonnegative matrix factorization of the temporal spectra. This framework, inspired by audio decomposition, allows transforming back these frequency patterns into networks, so as to highlight the evolution of the underlying structure of the network over time. The effectiveness of the method is first evidenced on a toy example, prior being used to study a temporal network of face-to-face contacts. The extraction of sub-networks highlights significant structures decomposed on time intervals. 
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons