skip to content
 

The Effect of Recommendations on Network Structure

Presented by: 
Sharad Goel Stanford University
Date: 
Thursday 15th December 2016 - 14:00 to 14:45
Venue: 
INI Seminar Room 1
Abstract: 
Co-authors: Jessica Su (Stanford University), Aneesh Sharma (Twitter)
 
Online social networks regularly offer users personalized, algorithmic suggestions of whom to connect to. Here we examine the aggregate effects of such recommendations on network structure, focusing on whether these recommendations increase the popularity of niche users or, conversely, those who are already popular. We investigate this issue by empirically and theoretically analyzing abrupt changes in Twitter's network structure around the mid-2010 introduction of its "Who to Follow" feature. We find that users across the popularity spectrum benefitted from the recommendations; however, the most popular users profited substantially more than average. We trace this "rich get richer" phenomenon to three intertwined factors. First, as is typical of network recommenders, the system relies on a "friend-of-friend"-style algorithm, which we show generally results in users being recommended proportional to their degree. Second, we find that the baseline growth rate of users is sublinear in degree. This mismatch between the recommender and the natural network dynamics thus alters the structural evolution of the network. Finally, we find that people are much more likely to respond positively to recommendations for popular users -- perhaps because of their greater name recognition -- further amplifying the cumulative advantage of well-known individuals.

Related Links
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons