skip to content
 

Floer homology, group orders, and taut foliations of hyperbolic 3-manifolds

Presented by: 
Nathan Dunfield University of Illinois at Urbana-Champaign
Date: 
Monday 30th January 2017 - 14:00 to 15:00
Venue: 
INI Seminar Room 1
Abstract: 

A bold conjecture of Boyer-Gorden-Watson and others posit that for any irreducible rational homology 3-sphere M the following three conditions are equivalent: (1) the fundamental group of M is left-orderable, (2) M has non-minimal Heegaard Floer homology, and (3) M admits a co-orientable taut foliation. Very recently, this conjecture was established for all graph manifolds by the combined work of Boyer-Clay and Hanselman-Rasmussen-Rasmussen-Watson. I will discuss a computational survey of these properties involving half a million hyperbolic 3-manifolds, including new or at least improved techniques for computing each of these properties. 

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons