skip to content

Monster groups acting on CAT(0) spaces

Presented by: 
Rémi Coulon Université de Rennes 1, CNRS (Centre national de la recherche scientifique)
Thursday 16th February 2017 - 10:00 to 12:00
INI Seminar Room 2
Since the beginning of the 20th century, infinite torsion groups have been the source of numerous developments in group theory: Burnside groups Tarski monsters, Grigorchuck groups, etc. From a geometric point of view, one would like to understand on which metric spaces such groups may act in a non degenerated way (e.g. without a global fixed point).   In this talk we will focus on CAT(0) spaces and present two examples with rather curious properties. The first one is a non-amenable finitely generated torsion group acting properly on a CAT(0) cube complex. The second one is a non-abelian finitely generated Tarski-like monster : every finitely generated subgroup is either finite or has finite index. In addition this group is residually finite and does not have Kazdhan property (T).   (Joint work with Vincent Guirardel)

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons