skip to content

Line bundles over noncommutative spaces

Presented by: 
Giovanni Landi
Wednesday 14th June 2017 - 11:30 to 12:30
INI Seminar Room 1
We give a Pimsner algebra construction of noncommutative lens spaces as `direct sums of line bundles' and exhibit them as `total spaces' of certain principal bundles over noncommutative weighted projective spaces. For each quantum lens space one gets an analogue of the classical Gysin sequence relating the KK theory of the total space algebra to that of the base space one. This can be used to give explicit geometric representatives of the K-theory classes of the lens spaces. 
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons