skip to content

The truth about finite group orbifolds

Presented by: 
Terry Gannon
Friday 16th June 2017 - 14:30 to 15:30
INI Seminar Room 1
Chiral CFTs (VOAs or conformal nets) are interesting for their representation theory. Orbifolds are a standard method for constructing new chiral CFTs from old ones. Start with a chiral theory with trivial representation theory, and orbifold it by a finite group; the result (called a holomorphic orbifold) has the representation theory given by the twisted Drinfeld double of that finite group, where the twist is a 3-cocycle. In practise it is hard to identify that twist. 

I'll begin my talk by giving some examples of orbifolds. I'll identify a well-known class of holomorphic orbifolds where we now know the twist. I'll relate holomorphic orbifolds to KK-theory as well as the PhD thesis of a certain Vaughan Jones. Then I'll explain how any choice of finite group and 3-cocycle is realized by a chiral CFT. This is joint work with David Evans.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons