skip to content

Traces, current algebras, and link homologies

Presented by: 
David Rose University of North Carolina
Monday 26th June 2017 - 14:30 to 15:30
INI Seminar Room 1
We'll show how categorical traces and foam categories can be used to define an invariant of braid conjugacy, which can be viewed as a "universal" type-A braid invariant. Applying various functors, we recover several known link homology theories, both for links in the solid torus, and, more-surprisingly, for links in the 3-sphere. Variations on this theme produce new annular invariants, and, conjecturally, a homology theory for links in the 3-sphere which categorifies the sl(n) link polynomial but is distinct from the Khovanov-Rozansky theory. Lurking in the background of this story is a family of current algebra representations.

This is joint work with Queffelec and Sartori.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons