skip to content
 

Kinetic energy choice in Hamiltonian/hybrid Monte Carlo

Presented by: 
Sam Livingstone University of Bristol
Date: 
Wednesday 5th July 2017 - 11:00 to 11:45
Venue: 
INI Seminar Room 1
Abstract: 
We consider how different choices of kinetic energy in Hamiltonian Monte Carlo affect algorithm performance. To this end, we introduce two quantities which can be easily evaluated, the composite gradient and the implicit noise. Results are established on integrator stability and geometric convergence, and we show that choices of kinetic energy that result in heavy-tailed momentum distributions can exhibit an undesirable negligible moves property, which we define. A general efficiency-robustness trade off is outlined, and implementations which rely on approximate gradients are also discussed. Two numerical studies illustrate our theoretical findings, showing that the standard choice which results in a Gaussian momentum distribution is not always optimal in terms of either robustness or efficiency.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons