skip to content
 

Fractional Order Derivatives Regularization: Models, Algorithms and Applications

Presented by: 
Ke Chen University of Liverpool
Date: 
Tuesday 5th September 2017 - 09:50 to 10:40
Venue: 
INI Seminar Room 1
Abstract: 
In variational imaging and other inverse problem modeling, regularisation plays a major role.In recent years, high order regularizers such as the mean curvature, the Gaussian curvature and Euler's elastica are increasingly studied and applied, and many impressive results over the widely-used gradient based models are reported.

Here we present some results from studying another class of high and non-integer order regularisers based on fractional order derivatives and focus on two aspects of this class of models:(i) theoretical analysis and advantages; (ii) efficient algorithms.We found that models with regularization by fractional order derivatives are convex in a suitable space and algorithms exploiting structured matrices can be employed to design efficient algorithms.Applications to restoration and registration are illustrated. This opens many opportunities to apply these regularisers to a wide class of imaging problems.

Ke Chen and J P Zhang, EPSRC Liverpool Centre for Mathematics in Healthcare,Centre for Mathematical Imaging Techniques,   and Department of Mathematical Sciences,The University of Liverpool,United Kingdom[ http://tinyurl.com/EPSRC-LCMH
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons