skip to content
 

Optimal Transport and Deep Generative Models

Presented by: 
Gabriel Peyre CNRS - Ecole Normale Superieure Paris
Date: 
Thursday 14th December 2017 - 10:00 to 11:00
Venue: 
INI Seminar Room 1
Abstract: 
Co-authors: Marco Cuturi (ENSAE), Aude Genevay (ENS)

In this talk, I will review some recent advances on deep generative models through the prism of Optimal Transport (OT). OT provides a way to define robust loss functions to perform high dimensional density fitting using generative models. This defines so called Minimum Kantorovitch Estimators (MKE) [1]. This approach is especially useful to recast several unsupervised deep learning methods in a unifying framework. Most notably, as shown respectively in [2,3] (and reviewed in [4]) Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN) can be interpreted as (respectively primal and and dual) approximate MKE. This is a joint work with Aude Genevay and Marco Cuturi.

References: [1] Federico Bassetti, Antonella Bodini, and Eugenio Regazzini. On minimum Kantorovich distance estimators. Statistics & probability letters, 76(12):1298–1302, 2006. [2] Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin, Carl-Johann Simon-Gabriel, and Bernhard Schoelkopf. From optimal transport to generative modeling: the VEGAN cookbook. Arxiv:1705.07642, 2017. [3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. Arxiv:1701.07875, 2017. [4] Aude Genevay, Gabriel Peyré, Marco Cuturi, GAN and VAE from an Optimal Transport Point of View, Arxiv:1706.01807, 2017

Related Links
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons