skip to content
 

Causal Inference for Treatment Effects: A Theory and Associated Learning Algorithms

Presented by: 
Mihaela van der Schaar University of Oxford
Date: 
Thursday 15th March 2018 - 11:00 to 12:00
Venue: 
INI Seminar Room 2
Abstract: 
We investigate the problem of estimating the causal effect of a treatment on individual subjects from observational data; this is a central problem in various application domains, including healthcare, social sciences, and online advertising. We first develop a theoretical foundation of causal inference for individualized treatment effects based on information theory. Next, we use this theory, to construct an information-optimal Bayesian causal inference algorithm.  This algorithm embeds the potential outcomes in a vector-valued reproducing kernel Hilbert space and uses a multi-task Gaussian process prior over that space to infer the individualized causal effects. We show that our algorithm significantly outperforms the state-of-the-art causal inference algorithms. The talk will conclude with a discussion of the impact of this work on precision medicine and clinical trials.



The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons