skip to content
 

On privacy amplification, lossy compression, and their duality to channel coding

Presented by: 
Joe Renes ETH Zürich
Date: 
Monday 23rd July 2018 - 11:45 to 12:30
Venue: 
INI Seminar Room 1
Abstract: 
We examine the task of privacy amplification from information-theoretic and coding-theoretic points of view. In the former, we give a one-shot characterization of the optimal rate of privacy amplification against classical adversaries in terms of the optimal type-II error in asymmetric hypothesis testing. This formulation can be easily computed to give finite-blocklength bounds and turns out to be equivalent to smooth min-entropy bounds by Renner and Wolf [Asiacrypt 2005] and Watanabe and Hayashi [ISIT 2013], as well as a bound in terms of the E divergence by Yang, Schaefer, and Poor [arXiv:1706.03866 [cs.IT]]. In the latter, we show that protocols for privacy amplification based on linear codes can be easily repurposed for channel simulation. Combined with known relations between channel simulation and lossy source coding, this implies that privacy amplification can be understood as a basic primitive for both channel simulation and lossy compression. Applied to symmetric channels or lossy compression settings, our construction leads to protocols of optimal rate in the asymptotic i.i.d. limit. Finally, appealing to the notion of channel duality recently detailed by us in [IEEE Trans. Info. Theory 64, 577 (2018)], we show that linear error-correcting codes for symmetric channels with quantum output can be transformed into linear lossy source coding schemes for classical variables arising from the dual channel. This explains a “curious duality” in these problems for the (self-dual) erasure channel observed by Martinian and Yedidia [Allerton 2003; arXiv:cs/0408008] and partly anticipates recent results on optimal lossy compression by polar and low-density generator matrix codes.



The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons