skip to content

Contributed talk - Extended evaluation maps from knots to the embedding tower

Presented by: 
Danica Kosanović
Thursday 6th December 2018 - 16:30 to 17:00
INI Seminar Room 1
The evaluation maps from the space of knots to the associated embedding tower are conjectured to be universal knot invariants of finite type. Currently such invariants are known to exist only over the rationals (using the existence of Drinfeld associators) and the question of torsion remains wide open. On the other hand, grope cobordisms are certain operations in ambient 3-space producing knots that share the same finite type invariants and give a geometric explanation for the appearance of Lie algebras and graph complexes.

I will explain how grope cobordisms and an explicit geometric construction give paths in the various levels of the embedding tower. Taking components recovers the result of Budney-Conant-Koytcheff-Sinha, showing that these invariants are indeed of finite type. This is work in progress joint with Y. Shi and P. Teichner.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons