skip to content

Boundary value problems on a finite interval, fractalisation and revivals

Presented by: 
Beatrice Pelloni
Monday 9th September 2019 - 11:30 to 12:30
INI Seminar Room 1
I will describe the behaviour of equations posed on a finite interval, and in particular the “Talbot effect”, a phenomenon known in optics and quantum mechanics, studied by M. Berry in the 1990s and re-discovered in the context of dispersive equations by Peter Olver in recent years. In this context, this
effect implies that the solution of periodic problems exhibits either revivals of the initial condition, or fractalisation. To study the extent of this effect, we use the solution representation obtained by the Unified Transform of Fokas, and numerical experimentation. This is joint work with David Smith, Lyonell Boulton and George Farmakis.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons