skip to content

Computing spectral measures of differential and integral operators

Presented by: 
Andrew Horning
Tuesday 10th December 2019 - 14:00 to 14:30
INI Seminar Room 1
Unlike its matrix counterpart, the spectral measure of a self-adjoint operator may have an absolutely continuous component and an associated density function, e.g., in applications posed on unbounded domains. The state-of-the-art computational methods for these problems typically approximate the density function using a smoothed sum of Dirac measures, corresponding to the spectral measure of a matrix discretization of the operator. However, it is often difficult to determine the smoothing and discretization parameters that are necessary to accurately and efficiently resolve the density function. In this talk, we present an adaptive framework for computing the spectral measure of a self-adjoint operator that provides insight into the selection of smoothing and discretization parameters. We show how to construct local approximations to the density that converge rapidly when the density function is smooth and discuss possible connections with Pade approximation that could alleviate deteriorating convergence rates near non-smooth points.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons