Class forcing in a generalized context

We consider class forcing in a generalized context which allows more second-order objects than just the definable ones.

Definition 1. A pair $M = (\mathcal{M}, \mathcal{C})$ is a ground model if the following statements hold:

1. \mathcal{C} is a countable subset of \mathcal{M}.
2. \mathcal{M} is a countable transitive model of ZF^ω in the language \mathcal{L}_c enriched with additional predicates for every $A \subseteq \mathcal{C}$, i.e., \mathcal{M} satisfies Separation and Replacement for \mathcal{L}_c-formulas in this extended language.
3. If $A_1, \ldots, A_n \subseteq \mathcal{C}$, then \mathcal{M} contains all subsets of M that are definable over $(\mathcal{M}, A_1, \ldots, A_n)$.

Example 1. Let M be a countable transitive model of ZFC and let $\mathcal{M} = (\mathcal{M}, \mathcal{C})$ be the set of all subsets of M that are definable over $(\mathcal{M}, \mathcal{C}_1, \mathcal{C}_2)$. Then $\mathcal{C} = \mathcal{M}$ is a ground model.

Sketch of the proof. Let for the Gödel code \mathcal{G} be the formula in the forcing language of \mathcal{M}, then \mathcal{M} is a ground model.

Let $\mathcal{M} = (\mathcal{M}, \mathcal{C})$ be a ground model.

In set forcing, every partial order \mathcal{P} is countable and transitive, and $\mathcal{M} = (\mathcal{M}, \mathcal{C})$ is a model of Kelley-Morse class theory KM, then \mathcal{M} is a ground model.

In class forcing, however, it is possible to have non-ground models. For example, consider a class forcing \mathcal{P} in a generalized context which allows more second-order objects than just the definable ones. In this case, \mathcal{M} may not be a ground model.

Boolean completions and the forcing theorem

Theorem 8. Assume that \mathcal{M} satisfies either global choice or power set and let $\mathcal{P} = (\mathcal{P}, \mathcal{L})$ be a separative class forcing. Then the following statements are equivalent:

1. \mathcal{P} satisfies the definability lemma for \mathcal{M}.
2. \mathcal{P} satisfies the forcing theorem for all \mathcal{L}-formulas.
3. \mathcal{P} satisfies the uniform forcing theorem for all \mathcal{L}-formulas.

Theorem 5. If \mathcal{P} satisfies the definability lemma for \mathcal{M}, then \mathcal{P} satisfies the forcing theorem for every \mathcal{L}-formula over \mathcal{M}.

Example. Let $\mathcal{P} = \mathcal{Col}(\omega_1, \mathcal{M})$ denote the class of all Cohen forcing conditions \mathcal{C} such that $\mathcal{C} = \mathcal{M}$ is a ground model.

Theorem 10. If \mathcal{M} is a countable transitive model of ZFC and $\mathcal{C} = \mathcal{M}(\mathcal{M})$, then \mathcal{P} does not satisfy the forcing theorem over \mathcal{M}.

In particular, \mathcal{P} does not have a Boolean completion.