On the classification and topology of complex map-germs of corank one and A_e-codimension one

Kevin Houston
School of Mathematics
University of Leeds
Leeds, LS2 9JT, U.K.
e-mail: khouston@amsta.leeds.ac.uk

September 4, 2000

Abstract
Corank one map-germs $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^p, 0)$, $n < p$, of A_e-codimension one are classified and their vanishing topology is shown to be homotopically equivalent to a sphere.
AMS Mathematics Subject Classification 2000 : 58K40, 58K65

1 Introduction

In his classic paper [10] Mather classified the A-stable map-germs. The next target for classification, the A_e-codimension one germs, appears to be considerably more difficult, as one does not have an equivalent of Mather’s result that K-equivalent A-stable maps are A-equivalent. For example, the two real maps, $(x, y) \to (x, y^3 \pm x^2y)$, have A_e-codimension one, are K-equivalent but not A-equivalent, see [11]. However, this problem does not occur in the complex situation for this example.

In his Ph.D. thesis, [1], Cooper classified corank 1 A_e-codimension 1 map-germs \mathbb{C}^n to \mathbb{C}^{n+1} by using explicit changes in source and target to reduce the map to a normal form. A more elementary proof of the classification is given in [2]. Surprisingly, just as in the stable case the situation comes down to dealing with the K-equivalence class of the germ mainly because if the map is not an augmentation then the A-orbit is open in the K-orbit.

In this paper we generalise to the case of corank 1 A_e-codimension 1 map-germs \mathbb{C}^n to \mathbb{C}^p, $n < p$, i.e. the dimension of the target space is increased.

This paper was written while the author was a guest of the Isaac Newton Institute of Mathematical Sciences, Cambridge. He is grateful for the hospitality and financial support received. Thanks are also due to Maria Ruas for helpful conversations.

2 The results

The main theorem is the following.

Theorem 2.1 Suppose that $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^p, 0)$, $n < p$, is a corank 1 A_e-codimension 1 map-germ, then the following are true.
1. f is A-equivalent to a map of the form,

$$
(u_1, \ldots, u_{l-1}, v_1, \ldots, v_{l-1}, w_1, w_{l+1}, \ldots, w_{l+1}, x_1, \ldots, x_{n-l-(r+2)+1}, y)
$$

$$
\mapsto (u_1, \ldots, u_{l-1}, v_1, \ldots, v_{l-1}, w_1, w_{l+1}, \ldots, w_{l+1}, x_1, \ldots, x_{n-l-(r+2)+1},
$$

$$
y^{l+1} + \sum_{i=1}^{l-1} v_i y^i, y^{l+2} + \sum_{i=1}^{l-1} v_i y^i + y^l \sum_{i=1}^{l-1} v_i y^i, \ldots, y^{n-l-(r+2)+1} + \sum_{i=1}^{l-1} w_i y^i),
$$

where $r = p - n - 1$ and $l + 1$ is the multiplicity of the germ. Conversely, any such germ has A_l-codimension 1.

2. The germ is precisely $l + 2$-determined.

3. An A_l-versal unfolding is given by unfolding with the addition of the term λy^l to the $(p - rl - 1)$th component function.

One immediately deduces the following.

Corollary 2.2 Corank 1 A_l-codimension 1 map-germs from C^n to C^p which are K-equivalent are A-equivalent.

To every finitely A-determined corank 1 map-germ there exists a unique stabilisation, see [7]. The image of this stabilisation is called the disentanglement of f. One can also investigate the multiple points in this image.

Definition 2.3 Let $h : X \rightarrow Y$ be a continuous map. The kth image multiple point space of h, denoted $M_k(h)$, is defined to be,

$$
M_k(h) := \text{closure}\{y \in Y|\#h^{-1}(y) \geq k\}.
$$

Definition 2.4 We define the kth disentanglement of f, denoted $\text{Dis}_k(f)$, to be the kth multiple point space of the stabilisation of f.

Suppose that $f_R : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0)$ is a finitely A-determined map-germ, with a real stabilisation $f_{R,t}$ and that the complexification of f_R, denoted f_C has stabilisation arising from complexifying $f_{R,t}$. We can denote the kth image multiple point spaces of these maps by $\text{Dis}(f_R)$ and $\text{Dis}(f_C)$.

Definition 2.5 The map $f_{R,t}$ is a good real perturbation if $\dim H_i(\text{Dis}_i(f_R); \mathbb{Z}) = \dim H_i(\text{Dis}_i(f_C); \mathbb{Z})$ for all $i = p - (p - n - 1)k - 1$, with $2 \leq k \leq p/(p - n)$.

This is a generalisation of the notion given in [12] and [9]. The idea is that the complex topology is visible over the reals.

Theorem 2.6 Suppose that $f : (C^n, 0) \rightarrow (C^p, 0)$, $n < p$, is a corank 1 A_l-codimension 1 map-germ.

1. The disentanglement $\text{Dis}_1(f)$ is homotopically equivalent to a $(n-(p-n-1))$-sphere. The higher disentanglements are empty or contractible.

2. It is obvious that f is the complexification of a real map-germ. This map has a good real perturbation and in fact the natural inclusion for this perturbation $\text{Dis}_k(f_R) \rightarrow \text{Dis}_k(f_C)$ is a homotopy equivalence for all $k \geq 1$.

These results are analogous to the case of a quadratic isolated complete intersection singularity. For then the Milnor fibre is homotopically equivalent to a single sphere and it is possible to define a real Milnor fibre with the same topology. (In fact the above theorem is a consequence of these results).

When an isolated complete intersection singularity has Milnor number equal to one then it is K-equivalent to a quadratic singularity. One may ask for corank 1 maps in the range $n < p$, if the disentanglement is homotopically a sphere, then is the map A_l-codimension 1?
3 Classification

3.1 Proof of Theorem 2.1 part 1

Firstly we define the augmentation of a map-germ.

Definition 3.1 Let \(f : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^p, 0) \) be a map with a 1-parameter stable unfolding \(F : (\mathbb{C}^n \times \mathbb{C}, 0) \rightarrow (\mathbb{C}^p \times \mathbb{C}, 0) \), where \(F(x, \lambda) = (f(x), \lambda) \). Then the augmentation of \(f \) by \(F \) is the map \(A_F(f) := (f(x), \lambda) \).

If \(f \) has \(A_e \)-codimension 1 then \(A_F(f) \) has \(A_e \)-codimension 1 and the equivalence class of \(A_F(f) \) is independent of the choice of miniversal unfolding of \(f \). See Proposition 2.1 and Theorem 2.4 of [2]. Thus we can produce new codimension 1 maps from old codimension 1 maps. If \(f \) is not the augmentation of another germ then \(f \) is called primitive.

One can also generalise this definition so that the unfolding parameter is replaced by a function, see [4].

To prove part 1 of Theorem 2.1 we use results from the classification in the \(p = n + 1 \) case given in [2]. Let us follow them and begin by defining a map \(f^l : (\mathbb{C}^{l-1}, 0) \rightarrow (\mathbb{C}^l, 0) \) by

\[
f^l(u, v, y) = (u, v, y^{l+1} + \sum_{i=1}^{l-1} u_i y^i, y^{l+2} + \sum_{i=1}^{l-1} v_i y^i).
\]

By Lemma 4.1 of [2] the \(A_e \)-codimension is 1. If we label the last two coordinates of \(\mathbb{C}^l \) \(Y_1 \) and \(Y_2 \) then the \(A_e \)-tangent space is

\[
T A_e f^l = \theta(f^l) \left\{ y^l \partial / \partial Y_2, y^{l-1} \partial / \partial v_1, \ldots, y \partial / \partial v_{l-1} \right\} + y^{l-1} \partial / \partial v_1 + y^l \partial / \partial Y_2, \ldots, y \partial / \partial v_{l-1} + y^l \partial / \partial Y_2 \right\}.
\]

Let us now define an extension of this map, \(f^{l,r} : (\mathbb{C}^{l-1+r}, 0) \rightarrow (\mathbb{C}^{l+r+1}, 0) \):

\[
f^{l,r}(u, v, y, w) = (u, v, y^{l+1} + \sum_{i=1}^{l-1} u_i y^i, y^{l+2} + \sum_{i=1}^{l-1} v_i y^i, w, \sum_{i=1}^{l-1} w_i y^i, \ldots, \sum_{i=1}^{l-1} w_{r-1} y^i).
\]

Through augmentation we get a map of the form in Theorem 2.1. By the proof of Proposition 3.7 of [6] it is known that \(f^{l,r} \) is finitely determined. However we can do better than this as the following shows.

Theorem 3.2 The map \(f^{l,r} \) has \(A_e \)-tangent space equal to

\[
T A_e f^{l,r} = \theta(f^{l,r}) \left\{ y^l \partial / \partial Y_2, y^{l-1} \partial / \partial v_1, \ldots, y \partial / \partial v_{l-1} \right\} + y^{l-1} \partial / \partial v_1 + y^l \partial / \partial Y_2, \ldots, y \partial / \partial v_{l-1} + y^l \partial / \partial Y_2 \right\}.
\]

Hence \(f^{l,r} \) has \(A_e \)-codimension equal to 1. To prove the above theorem let us investigate what the effect of extension is.

Suppose we have a finitely determined map \(h : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^p, 0) \) such that

\[
h(w_1, \ldots, w_l, y, u_1, \ldots, u_{l-1}, x) = (w_1, \ldots, w_l, \sum_{i=1}^{l-1} u_i y^i, y^{l+1} + \sum_{i=1}^{l-1} u_i y^i, u_1, \ldots, u_{l-1}, x, f_1(u, x, y), \ldots, f_l(u, x, y)).
\]

Let \(O_X \) denote the ring of function germs at 0 for the germ \((X, 0) \). The tangent space \(T A_e \) is a \(h^*(O_{C^n}) \) submodule of \((O_{C^n})^l \). Let \(e_i \) denote the standard basis vector for the \(i \)th copy of \(O_{C^n} \).
Lemma 3.3 \(\sigma \), \(r_i \in \mathcal{T} \mathcal{A}_e \) for all \(1 \leq i \leq l + 1 \).

Proof. It is evident that we can reduce the requirement to \(y^k e_i \in \mathcal{T} \mathcal{A}_e \) for all \(i = 1, \ldots, l + 1 \).

Note that

\[
y^k e_{i+1} \in \mathcal{T} \mathcal{A}_e \iff y^{k-1} e_i \in \mathcal{T} \mathcal{A}_e, \quad k - i \geq 0. (+)
\]

This follows from the fact that \(y^i e_i + y^i e_{i+1} \in \mathcal{T} \mathcal{R}_e \) and it implies that it suffices to show that \(y^k e_{i+1} \in \mathcal{T} \mathcal{A}_e \) for all \(k \).

For \(1 \leq s \leq l \), \(e_s + y^s e_{i+1} \in \mathcal{T} \mathcal{R}_e \) and \(\mathcal{E}_s \in \mathcal{T} \mathcal{L}_e \) so \(y^s e_{i+1} \in \mathcal{T} \mathcal{A}_e \). We will now use induction: Suppose \(y^s e_{i+1} \in \mathcal{T} \mathcal{A}_e \) for all \(s < k \) then \(y^k e_{i+1} \in \mathcal{T} \mathcal{A}_e \).

The number \(k \) will be of the form \(k = r(l+1) + i \) with \(r \geq 1 \) (assuming \(k < l + 1 \) already dealt with as above) and \(0 \leq i \leq l \).

Case \(i = 0 \): Clearly \(y^{l+1} + \sum_{j=1}^{l-1} u_j y^j e_{i+1} \in \mathcal{T} \mathcal{L}_e \) so \(y^{r(l+1)} e_{i+1} \in \mathcal{T} \mathcal{A}_e \) as the other terms in \(y \) in the expansion have order less than \(r(l+1) \).

Case \(i > 0 \): The assumption \(y^s e_{i+1} \in \mathcal{T} \mathcal{A}_e \) for all \(s < r(l+1) + i \) implies that \(y^s e_i \in \mathcal{T} \mathcal{A}_e \) for all \(i \leq s < r(l+1) + i \) by (.), i.e.

\[
y^s e_i \in \mathcal{T} \mathcal{A}_e \quad \text{for all} \quad s < r(l+1). (++)
\]

After applying this lemma to the map \(f^{i,r} \) and all that is required is to check that if \(g \) is a function in variables \(w_1 \) to \(w_l \) then \(g y^t \partial / \partial Y_2 \) is in the target space. This is easy to check.

The maps \(f^{i,r} \) have a very interesting property which will be very useful.

Lemma 3.4 The \(A \)-orbit of \(f^{i,r} \) is open in its \(K \)-orbit.

Proof. Let the dimension of the source be \(n \) and that of the target be \(p \). and denote the normal space of the \(G \)-orbit by \(NG_e \). It is easy to calculate that \(\dim NG_e(f^{i,r}) = p + 1 \) (It should be noted that this is not true for augmentations of \(f^{i,r} \) as then we have \(e_i \in \mathcal{T} \mathcal{L}_e \) for at least one \(i \)). Thus we find that \(\dim \mathcal{R}_e = \dim \mathcal{N}_e - p \). But \(\dim \mathcal{N}_e = \dim \mathcal{N}A - n \) (as \(f^{i,r} \) is not \(A \)-stable, see [14] p.110) and \(\dim \mathcal{N}_e = \dim \mathcal{N}C + (p-n) \) ([14] p.509). So \(\dim \mathcal{N}_e = \dim \mathcal{N}_e \), implying that the \(A \)-orbit is open in the \(K \)-orbit.

Proof (of Theorem 2.1). We now generalise the proof of Proposition 4.3 of [2]. Suppose that \(f : (C^p, 0) \to (C^p, 0) \) is a corank 1 \(A \)-codimension 1 map-germ, \(n < p \) with multiplicity \(l + 1 \). The versal unfolding \(G : (C^n \times C^0, 0) \to (C^n \times C^0, 0) \) is a \(n - l(p - n + 1) + 1 \)-fold prism on a minimal stable map-germ of multiplicity \(l + 1 \). Thus by Theorem 2.7 of [2] \(f \) is the \(n - l(p - n + 1) + 1 \)-fold augmentation of an \(A \)-codimension 1, corank 1, multiplicity \(l + 1 \) map-germ \(f' : (C^{l+1+p-n-1}, 0) \to (C^{l+1+p-n-1}, 0) \). Such a map is obviously \(K \)-equivalent to the map \(f^{i,p-n-1} \). The \(A \)-orbit of \(f^{i,p-n-1} \) is open in its \(K \)-orbit by Lemma 3.4 and by Lemma 3.12 of [2] there is at most one \(A \)-orbit in a given complex contact class, thus we conclude that \(f' \) and \(f^{i,p-n-1} \) are \(A \)-equivalent.

The \(n - l(p - n + 1) + 1 \)-fold augmentation of \(f^{i,p-n-1} \) is \(A \)-equivalent to \(f \) as the \(A \)-equivalence class of the augmentation of codimension 1 map-germ \(g \) depends only on the \(A \)-equivalence class of \(g \).
3.2 Order of determinacy

To find the order of determinacy we use the techniques of [13], in particular his Proposition 3.8, which we summarise as the following. Denote the maximal ideal of \(\mathcal{O}_C \) by \(m_d \) and use the standard \(tf \) and \(w_f \) notation of Singularity Theory, see [14].

Proposition 3.5 Let \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}^r, 0) \) be a map-germ. Let

\[
D \subseteq tf(\theta_{\mathbb{C}^n}) + w_f(\theta_{\mathbb{C}^r}) + m_n^s \theta_f
\]

be an \(\mathcal{O}_{\mathbb{C}^n} \)-module such that

\[
m_n^s \theta_f \subseteq tf(m_n \theta_{\mathbb{C}^n}) + f^*(m_p) \cdot D + m_n^{s+1} \theta_f.
\]

Then \(f \) is \(s \)-determined.

Let \(f \) be as in Theorem 2.1. Then by calculation one can see that \(T_{\mathcal{A}_c}f \) has the same type of structure as \(T_{\mathcal{A}_c}(f^{l,r}) \): Let \(m = p - r - 1 \), then \(y^i e_m \) and \(y^{l-i} e_{l+i+1} \), \(i = 1, \ldots, l-1 \) are missing from \(T_{\mathcal{A}_c}f \), but \(y^i e_m + y^{l-i} e_{l+i+1} \) is included. Thus if we let \(m_{n-1} \) denote the ideal generated by the variables other than \(y \) and

\[
D = \langle \mathcal{O}_n, \ldots, \mathcal{O}_n, m_{n-1} \mathcal{O}_n + \langle y^i \rangle \mathcal{O}_n, \ldots, m_{n-1} \mathcal{O}_n + \langle y^l \rangle \mathcal{O}_n, \mathcal{O}_n, m_{n-1} \mathcal{O}_n + \langle y^{l+1} \rangle \mathcal{O}_n, \mathcal{O}_n, \ldots, \mathcal{O}_n \rangle
\]

where the \(m_{n-1} \mathcal{O}_n + \langle y^i \rangle \mathcal{O}_n \) terms begin at position \(i \), then \(D \) is an \(\mathcal{O}_n \)-module contained in \(T_{\mathcal{A}_c}f \).

The non-trivial problem is to show that, for all \(i \), \(y^{l+2} e_i \) is in the right hand side of the second inclusion in the proposition. For the positions corresponding to the functions \(u_1, \ldots, u_{l-1}, v_1, \ldots, v_{l-1} \) and \(w_{11}, \ldots, w_{l1} \) we can use elements of \(tf(m_n \theta_{\mathbb{C}^n}) \) modulo \(m_n^{l+3} \). For the \(r \) extension terms and position \(2l - 1 \) we use \(y^{l+2} + \sum_{i=1}^{l-1} v_i y^i \), elements of \(tf \) and \(f^*(m_p) \cdot D \). For the remaining position we use \(y \theta_f / \partial y \) and terms in \(tf \) and \(f^*(m_p) \cdot D \).

So \(f \) is at least \((l+2) \)-determined. This is in fact exact. The \((l+1) \)-jet is not finitely \(\mathcal{A} \)-determined as can be seen by showing (using the method of [8]) that \((l+1) \)th multiple point space has dimension greater than that of a finitely determined map-germ.

4 Topology

Theorem 2.6 part 1 on the topology of the \(k \)th disentanglement has been proved for the \(p = n + 1 \) in Corollary 5.3 of [5], though note that this was first proved in this case for \(k = 1 \) in [1], see [2]. For more general \(p \) that \(\text{Dis}_1(f) \) is homotopically equivalent to a sphere can be deduced from the proof of Proposition 3.7 of [6] and Theorem 4.24 of [3] but the following, which investigates higher disentanglements, also shows it.

We begin with noting from Theorem 3.2 of [5] that for an augmentation \(\text{Dis}_n(\mathcal{A}_F f) \) is homotopically equivalent to the suspension of \(\text{Dis}_n(f) \). Thus we can assume our map is primitive.

Define \(f_t : \mathbb{C}^{d-l} \times \mathbb{C}^l \to \mathbb{C}^d \times \mathbb{C}^{(l+1)} \) by

\[
f_t(u, v, w) = (u, v, y^{l+1} + \sum_{i=1}^{l-1} u_i y^i, y^{l+2} + \sum_{i=1}^{l-1} v_i y^i + t v^l, w, \sum_{i=1}^l w_{1i} y^i, \ldots, \sum_{i=1}^l w_{ri} y^i).
\]

Then, for \(t \neq 0 \) we can produce the disentanglement map for \(f_0 \).
Define \(g_t : \mathbb{C}^{2l-1} \to \mathbb{C}^l \) by \(g_t := f_t | f_t^{-1}(\mathbb{C}^l \times \{0\}) \), then \(g_t \) for \(t \neq 0 \) gives the disentanglement map for \(g_0 \), a corank 1 map-germ of \(A_\nu \)-codimension 1. The space \(\text{Dis}_m(g) \) is homotopically equivalent to a \(2l-1 \) sphere if \(m = 1 \), and contractible or empty for \(m > 1 \) by Corollary 5.3 of [5]. We shall show that \(\text{Dis}_m(f_0) \) is homotopically equivalent to this space. In the following we assume \(t \neq 0 \) defines the disentanglement maps.

For a continuous map \(h : X \to Y \) of topological spaces let \(D^k(h) \) denote the \(k \)th multiple point space as defined in [8].

From the natural inclusion of \(\mathbb{C}^l \) into \(\mathbb{C}^{l+r(i+1)} \) we induce a natural map \(\phi^k : D^k(g_t) \to D^k(f_t) \).

It is shown in the proof of Proposition 3.7 of [6] that \(D^k(g_t) \) and \(D^k(f_t) \) are non-singular for \(k < l+1 \), and from the description there we can deduce that \(D^k(f_t) \) contracts equivariantly onto \(D^k(g_t) \). The only other non-trivial spaces are \(D^{l+1}(f_t) \) and \(D^{l+1}(g_t) \) and from the description in [6] it follows that these are \(S_k \)-equivariantly homeomorphic Milnor fibres of what is effectively the same isolated complete intersection singularity.

To conclude that the natural map \(\text{Dis}_m(g_0) \to \text{Dis}_m(f_0) \) induces an isomorphism on integer homology for all \(m \) we use Theorem 3.2 of [6]:

Lemma 4.1 Suppose that \(h_i : X_i \to Y_i \), \(i = 1, 2 \), are finite and proper continuous maps for which the image computing spectral sequence exists (this is a technical condition which is true for the maps under consideration here) and that there exist continuous maps \(\phi \) and \(\psi \) such that the diagram

\[
\begin{array}{ccc}
\ h_1 : & X_1 & \to & Y_1 \\
\phi & \downarrow & \downarrow & \psi \\
\ h_2 : & X_2 & \to & Y_2 \\
\end{array}
\]

commutes. Then if the map \(\phi^k : D^k(h_1) \to D^k(h_2) \) is an \(S_k \)-homotopy equivalence for all \(k \geq 1 \), then \(\psi_{|M_m(h_1)} : M_m(h_1) \to M_m(h_2) \) induces an isomorphism on integer homology groups for all \(m \geq 1 \).

We turn our attention to the fundamental groups of the image multiple point spaces and to this end we prove the following.

Lemma 4.2 Suppose that \(f : X \to Y \) is a finite and proper continuous map, \(D^m(f) \) is path connected and that there exists a point \((x_1, \ldots, x_m) \in D^m(f) \) such that \(x_c = x_d \) for \(c \neq d \).

1. If \(D^{m-1}(f) \) is path connected then the natural map of fundamental groups

\[\pi_1(D^{m-1}(f)) \to \pi_1(M_{m-1}(f)) \]

is surjective.

2. If \(D^{m+1}(f) \) is empty then

\[\pi_1(D^m(f)) \to \pi_1(M_m(f)) \]

is surjective.

Proof. (i) For a continuous map \(h \) we can define \(\varepsilon^k : D^k(h) \to D^{k-1}(h) \) by projecting through omission of the last copy of the source of \(h \). Let \(D^k_r(h) \) be the image of \(D^k(h) \) in \(D^l(h) \) (through composition of maps \(\varepsilon^i \)). Then \(M_r(h) \) is the image of \(h_r := h|D^r_r \). We have

\[
D^j(f_r) = \begin{cases}
D^j_r(h), & \text{for } j < r, \\
D^j(h), & \text{for } j \geq r.
\end{cases}
\]

6
As $D^{m-1}(f)$ is path connected, $D^j(f_{m-1})$ is path connected for $j < m - 1$ as it is the image of $D^{m-1}(f)$ in $D^j(f)$. As $D^m(f)$ has a point with $x_e = x_d$, $c \neq d$, then so does $D^j(f_{m-1})$ for all $2 \leq j < m$. These two facts imply that every point in $D^j(f_m)$ is connected by a path to a point with $x_e = x_d$, $c \neq d$.

Now, for any continuous map h, $D^{i+1}(h) = D^2(e^i : D^i(h) \to D^{i-1}(h))$. From this and Theorem 4.18 of [3] we deduce that for $j \leq m + 1$ that

$$\pi_1(D^j(f_{m-1})) \to \pi_1\left(e^i(D^j(f_{m-1}))\right) = \pi_1(D^{i-1}(f_{m-1}))$$

is surjective and produce a chain of maps to get

$$\pi_1(D^{m-1}(f)) = \pi_1(D^{m-1}(f_{m-1})) \to \pi_1(M_{m-1}(f))$$

surjective.

(ii) One can follow a similar argument to show that $\pi_1(D^{m-1}(f_m)) \to \pi_1(M_m(f))$ is surjective. As $D^{m+1}(f)$ is empty then $e^m : D^m(f) \to e^m(D^m(f)) = D^{m-1}(f_m)$ is a bijective and proper map so this is a homomorphism. \qed

Proposition 4.3 The inclusion $\text{Dis}_m(g_0) \to \text{Dis}_m(f_0)$ is a homotopy equivalence for all $m \geq 1$ and hence Theorem 2.6 part 1 is proved.

Proof. Note that $M_m(f_l)$ and $M_m(g_l)$ are Stein spaces and so are homotopy equivalent to CW-complexes of dimension equal to their complex dimension.

If $\dim_C M_m(f_l) \leq 1$ then the statement is elementary to prove. If $\dim_C M_m(f_l) > 1$ then it is enough to show that $M_m(g_l)$ and $M_m(f_l)$ are simply connected because a map between simply connected CW-complexes that induces an isomorphism on integer homology is a homotopy equivalence by Whitehead's theorem, [15], p.220. In our given range we know that $M_m(g_l)$ is simply connected.

Note that $D^j(f_l)$ is contractible for $j < l + 1$ and $D^{l+1}(f_l)$ is the Milnor fibre of an isolated complete intersection singularity and so is homotopically equivalent to a wedge of spheres. Higher multiple point spaces are empty.

Case $\dim D^{l+1}(f_l) > 0$: Here $D^{l+1}(f_l)$ is connected and since the restriction to a reflecting hyperplane in the ambient space is the Milnor fibre of an isolated complete intersection singularity, see [8] Theorem 2.14, there exists a point (x_1, \ldots, x_{l+1}) such that $x_c = x_d$ for some $c \neq d$. From Lemma 4.2 we deduce that $\pi_1(D^{m}(f_l)) \to \pi_1(M_{m-1}(f_l))$ is surjective for all $m \leq l + 1$. For $m < l + 1$ the result is then true. For the $l + 1$ case we note that we have are only concerned with $\dim C M_{l+1}(f_l) \geq 2$, i.e. $D^{l+1}(f_l)$ is simply connected.

Case $\dim D^{l+1}(f_l) = 0$: As $\dim D^{l+1}(f_l) = l - 1$ the only situations to check are for $M_{l}(f_l)$, which is simple, it is homotopically a circle, and for $M_{2}(f_l)$ which has dimension 0. \qed

Proof (of Theorem 2.6 part 2). From Proposition 3.7 of [6] we see that a good real perturbation exists, (use $t < 0$ in f_l) and that the natural map $\text{Dis}_m(f_k) \to \text{Dis}_m(f_c)$ induces an isomorphism of integer homology groups.

If $\dim M_m(f_c) \leq 1$ then the statement is trivial. For the other situations we must show that $\text{Dis}_m(f_k)$ is simply connected. Calculations show that $D^k(f_{k,t})$ and $D^k(f_{c,t})$ are connected, non-singular and contract onto the diagonal for $k < l + 1$. The space $D^{l+1}(f_{c,t})$ is simply connected when its dimension is greater than 1, and $D^{l+1}(f_{k,t})$ is S_{l+1}-homotopically equivalent to it. Thus by Lemma 4.2 the image multiple point sets for $f_{k,t}$ are simply connected.

Again using Whitehead's theorem we conclude that the spaces are homotopically equivalent. \qed

We finish with a theorem on augmentations.
Theorem 4.4 Suppose that \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}^p, 0) \) is the augmentation by the isolated hypersurface singularity \(g : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0) \) of the corank 1 \(\mathcal{A}_e \)-codimension 1, multiplicity \(l + 1 \) map-germ. Let \(g \) have Milnor number \(\mu(g) \).

Then \(\text{Dis}_1(\mathcal{A}_{F,g}(f)) \) is homotopically equivalent to a wedge of \(\mu(g) n - 1(p - n - 1) + q \)-spheres. Higher disentanglements are contractible or empty. Furthermore,

\[
\mu(g) \leq \mathcal{A}_e - \text{cod}(\mathcal{A}_{F,g}(f)),
\]

with equality if \(g \) is quasihomogeneous.

Proof. The result on homotopy follows from Theorem 3.2 of [5].

Note that \(f \) is quasihomogeneous and hence so is the unfolding \(F \). Then, (denoting Tyurina number of \(g \) by \(\tau(g) \) and Milnor number by \(\mu(g) \)),

\[
\mathcal{A}_e - \text{cod}(\mathcal{A}_{F,g}(f)) = \tau(g)\mathcal{A}_e - \text{cod}(f), \quad \text{by Theorem 3.3 of [4]},
\]

\[
= \tau(g), \quad \text{by equality if } g \text{ quasihomogeneous.}
\]

\(\square \)

References

Recent Newton Institute Preprints

N100001-SMM KZ Markov
Justification of an effective field method in elasto-statics of heterogeneous solids

N100002-SCE YY Lobanov and VD Rushai
Studying the evolution of open quantum systems via conditional Wiener integrals

N100003-SCE J-G Wang and G-S Tian
Spin and charged gaps in strongly correlated electron systems with negative or positive couplings

N100004-SCE FV Kusmartsev
Conducting electron strings in oxides

N100005-ERN SG Dani
On ergodic \mathbb{Z}^d actions on Lie groups by automorphisms

N100006-SMM V Nesi and G Alessandri
Univalence of σ-harmonic mappings and applications

N100007-SCE X Dai, T Xiang, T-K Ng et al
Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal-superconductor tunnel junctions

N100008-ERN B Hasselblatt
Hyperbolic dynamical systems

N100009-SCE J Lou, S Quin, T-K Ng et al
Topological effects at short antiferromagnetic Heisenberg chains

N100010-SCE V Zlatić and J Freericks
Theory of valence transitions in Ytterbium-based compounds

N100011-ERN A Iozzi and D Witte
Cartan-decomposition subgroups of SU(2,n)

N100012-ERN D Witte and L Lifschitz
On automorphisms of arithmetic subgroups of unipotent groups in positive characteristic

N100013-ERN D Witte
Homogeneous Lorentz manifold with simple isometry group

N100014-SGT R Uribé-Vargos
Global theorems on vertics and flattenings of closed curves

N100015-SGT EA Bartolo, P Cassou-Nogués, I Luengo et al
Monodromy conjecture for some surface singularities

N100016-SGT IG Scherbak
Boundary singularities and non-crystallographic Coxeter groups

N100017-SGT K Houston
On the classification and topology of complex map-germs of corank one and A_∞-codimension one

N100018-SGT PJ Topalov and VS Matveev
Geodesic equivalence via integrability

N100019-GTF S Friedlander
On vortex tube stretching and instabilities in an inviscid fluid

N100020-SGT VD Sedykh
Some invariants of admissible homotopies of space curves

N100021-SGT IA Bogachevsky
Singularities of linear waves in plane and space

Information about Newton Institute Preprints is also available at
http://www.newton.cam.ac.uk/preprints.html