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Abstract. Given a sequence of random polynomials, we show that,
under some very general conditions, the roots tend to cluster near the
unit circle, and their angles are uniformly distributed. In particular, we
do not assume independence or equidistribution of the coefficients of the
polynomial. We apply this result to various problems in both random
and deterministic sequences of polynomials, including some problems in
random matrix theory.

1. Introduction

We are interested in the asymptotics of the zeros of the random polyno-
mial

PN (Z) =
N∑

k=0

aN,kZ
k

as N →∞. We will denote the zeros as z1, . . . , zN rather than z
(N)
1 , . . . , z

(N)
N

for simplicity.

Let

νN (ρ) := #
{

zk : 1− ρ ≤ |zk| ≤ 1
1− ρ

}

denote the number of zeros of PN (Z) lying in the annulus bounded by 1−ρ
and 1

1−ρ , where 0 ≤ ρ ≤ 1, and let

νN (θ, φ) := # {zk : θ ≤ arg (zk) < φ}
denote the number of zeros of PN (Z) whose argument lies between θ and
φ, where 0 ≤ θ < φ ≤ 2π.

Let (Ω,F ,P) be a probability space on which the array (aN,k) N≥1
0≤k≤N

is

defined. The aim of this paper is to show that under some very general
conditions on the distribution of the coefficients aN,k, we have that

lim
N→∞

1
N

νN (ρ) = 1 (1)
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and

lim
N→∞

1
N

νN (θ, φ) =
φ− θ

2π

either almost surely or in the pth mean, according to the hypotheses we
make. We say that the zeros cluster near the unit circle if (1) remains true
when ρ → 0 as N →∞. In many examples, a natural rescaling turns out to
be ρ = α(N)/N (so clustering requires α(N) = o(N)).

Almost all of our results will follow from the following:

Theorem 1. Let (ak) be a sequence of complex numbers which satisfy a0 6= 0
and aN 6= 0. Denote the zeros of the polynomial

PN (Z) =
N∑

k=0

akZ
k

by zi (for i from 1 to N), and for 0 ≤ ρ ≤ 1 let

νN (ρ) := # {zk , 1− ρ ≤ |zk| ≤ 1/(1− ρ)}
and for 0 ≤ θ < φ < 2π let

νN (θ, φ) := # {zk, θ ≤ arg (zk) < φ}

Then, for 0 ≤ α(N) ≤ N

(
1− 1

N
νN

(
α(N)

N

))
≤ 2

α(N)

(
log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

)

and there exists a constant C such that
∣∣∣∣
1
N

νN (θ, φ)− φ− θ

2π

∣∣∣∣
2

≤ C

N

(
log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

)

Though the proof of this proposition is very simple, using only Jensen’s
formula and a result of Erdős and Turan [7], powerful results follow.

Note that the same function

FN := log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

controls both the clustering of the zeros to the unit circle, and the uniformity
in the distribution of their arguments.

Note further that this result holds for any a0, . . . , aN subject to a0aN 6= 0,
and thus has consequences for non-random polynomials.

It is clear that if there exists a function α(N) = o(N) such that

FN = o(α(N)) a.s. (2)
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then the zeros of the random polynomial

P (Z) =
N∑

n=0

anZn

satisfy

lim
N→∞

1
N

νN

(
α (N)

N

)
= 1, a.s.

and,

lim
N→∞

1
N

νN (θ, φ) =
φ− θ

2π
, a.s.

(that is, the zeros cluster near the unit circle, and their arguments are
uniformly distributed).

The bulk of this paper is concerned with finding conditions on the coef-
ficients such that we may conclude that either E[FN ] = o(N) or that there
exists a deterministic function 0 < α(N) < N such that FN = o(α(N)) a.s.
For example, in Theorem 8 we show that there exists an α(N) such that (2)
holds if the ak satisfy the following three conditions:

• There exists an s > 0 such that for all k, µk := E [|ak|s] < ∞.
• Furthermore, lim supk→∞ (µk)

1/k = 1.
• For some 0 < δ ≤ 1 there exists t > 0 and a q > 0, such that for all

N

E
[

1
|aN |t

11{|aN |≤δ}

]
= O (N q) .

This can be interpreted as a generalization of a theorem of Shmerling and
Hochberg [18] by removing the following requirements on the coefficients in
the random polynomial: they are independent; they have a finite second
moment; they have density functions.

Our results also enable us to deal with the general case of sequences of
random polynomials (i.e. the coefficients of the polynomials are allowed to
change with the degree). For example, consider the sequence of polynomials

PN (Z) =
N∑

k=0

aN,kZ
k

If there exists a positive function α(N) = o(N) such that

lim
N→∞

1
α(N)

E

[
log

(
N∑

k=0

|aN,k|
)
− 1

2
log |aN,0| − 1

2
log |aN,N |

]
= 0

then by Theorem 1 the zeros of this sequence of random polynomials cluster
uniformly around the unit circle.

This more general case is dealt with in view of applications to charac-
teristic polynomials of random unitary matrices. We recover for example
the result of clustering of the zeros of the derivative of the characteristic
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polynomial of a random unitary matrix, as found in the work of Mezzadri,
[16]. We shall return to the study of random matrix polynomials in a later
paper.

The structure of this paper is as follows: In section 2 we review some
of the relevant history of zeros of random polynomials, and describe which
prior results which can be obtained as corollaries of our work. In section 3 we
describe the basic estimates we need, and then in sections 4 and 5 we prove
the main result, and use it to deduce clustering of zeros in many examples.

In Section 6 we study the random empirical measure

µN =
1
N

N∑

k=1

δzk
,

associated with the roots of random polynomials. We show that they con-
verge in mean or almost-surely weakly to the Haar measure on the unit circle
(i.e. the uniform measure on the unit circle).

2. Review of earlier work on random polynomials

Mark Kac [12] gave an explicit formula for the expectation of the number,
νN (B), of zeros of

N∑

n=0

anZn

in any Borel subset B of the real line, in the case where the variables (an)n≥0
are real independent standard Gaussian. His results were expanded in var-
ious directions (for example, to the non-Gaussian case), but most of the
work has focused on the real zeros (see [8], [6] and [17] for more details and
references).

Almost fifty years later, L.A. Shepp and J. Vanderbei [17] extended the
results of Kac to the case where B is any Borel subset of the complex plane.
They noticed that as the degree of the polynomials N gets large, the zeros
tend to cluster near the unit circle and are approximately uniformly dis-
tributed around the circle. I. Ibragimov and O. Zeitouni [10], using different
techniques, have obtained similar results for i.i.d. coefficients in the domain
of attraction of the stable law. They again observed the clustering of the
zeros near the unit circle.

However, this result about the clustering of the complex roots of random
polynomials has already been observed by Šparo and Šur [19] in a general
setting. They considered i.i.d. complex coefficients (an)n≥0 such that

P [ak = 0] 6= 1, k = 0, 1, . . . , N

and,
E

[
log+ |ak|

]
< ∞, k = 0, 1, . . . , N



ZEROS OF RANDOM POLYNOMIALS 5

where log+ |ak| = max {0, log |ak|}. They proved that

lim
N→∞

1
N

νN (ρ) = 1

and
lim

N→∞
1
N

νN (θ, φ) =
φ− θ

2π
where the convergence holds in probability. Arnold [1] improved this re-
sult and proved that the convergence holds in fact almost surely and in the
pth mean if the moduli of ak are equidistributed and E [|log |ak||] < ∞ for
k = 0, 1, . . . , N . Recently, Shmerling and Hochberg [18] have shown that
the condition on equidistribution can be dropped if (an)n≥0 is a sequence
of independent variables which have continuous densities fn which are uni-
formly bounded in some neighborhood of the origin with finite means µn

and standard deviations σn that satisfy the condition

max
{

lim sup
n→∞

n
√
|µn| , lim sup

n→∞
n
√
|σn|

}
= 1,

P [a0 = 0] = 0

Finally, let us mention that the distribution of roots of random poly-
nomials has also been investigated in physics, which among others, ap-
pear naturally in the context of quantum chaotic dynamics. Bogomolny
et. al. [5] studied self-inversive polynomials, with ak = aN−k, and ak

(k = 0, 1, . . . , N−1
2 ) complex independent Gaussian variables with mean zero,

and they proved that not only do the zeros cluster near the unit circle, but
a finite proportion of them lie on it. This case is very interesting since it
shows that at least in some special cases, we can drop the independence and
equidistribution assumptions on the coefficients.

Theorems 6 and 7 of this paper includes and extends the above mentioned
results on uniform clustering of zeros.

3. Basic estimates

In the first part of this paper, we will apply Jensen’s formula repeatedly,
so we recall it here (see [14], for example).

Lemma 2. Let f be a holomorphic function in a neighborhood of the closed
disc Dr = {z ∈ C , |z| ≤ r}, such that f(0) 6= 0. Let zi be the zeros of f in
Dr = {z ∈ C , |z| < r}, repeated according to their multiplicities, then

1
2π

∫ 2π

0
log

∣∣f (
reiϕ

)∣∣ dϕ = log |f(0)|+
∑
zi

log
r

|zi| (3)

We also use Jensen’s inequality repeatedly, which states that if X is a
positive random variable, such that E[log X] exists, then

E[log X] ≤ logE[X]
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Before considering random polynomials, we will first state some funda-
mental results about zeros of deterministic polynomials.

For N ≥ 1, let (ak)0≤k≤N be a sequence of complex numbers satisfying
a0aN 6= 0. From this sequence construct the polynomial

PN (Z) =
N∑

k=0

akZ
k,

and denote its zeros by zi (where i ranges from 1 to N). For 0 ≤ ρ ≤ 1, we
are interested in estimates for

ν̃N (1− ρ) = # {zj , |zj | < 1− ρ}

νN (1/(1− ρ)) = #
{

zj , |zj | > 1
1− ρ

}

νN (ρ) = #
{

zj , 1− ρ ≤ |zj | ≤ 1
1− ρ

}

which counts the number of zeros of the polynomial PN (Z) which lie respec-
tively inside the open disc of radius 1− ρ, outside the closed disc of radius
1/(1− ρ), and inside the closed annulus bounded by circles of radius 1− ρ
and 1/(1− ρ).

Lemma 3. For N ≥ 1, let (ak)0≤k≤N be an sequence of complex numbers
which satisfy a0aN 6= 0. Then, for 0 < ρ < 1

1
N

ν̃N (1− ρ) ≤ 1
Nρ

(
log

(
N∑

k=0

|ak|
)
− log |a0|

)
, (4)

1
N

νN (1/(1− ρ)) ≤ 1
Nρ

(
log

(
n∑

k=0

|ak|
)
− log |aN |

)
(5)

and
(

1− 1
N

νN (ρ)
)
≤ 2

Nρ

(
log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

)
(6)

Proof. An application of Jensen’s formula, (3), with r = 1 yields

1
2π

∫ 2π

0
log

∣∣PN (eiϕ)
∣∣ dϕ− log |PN (0)| =

∑

|zi|<1

log
1
|zi|

where the sum on the right hand side is on zeros lying inside the open unit
disk. We have the following minorization for this sum:

∑

|zi|<1

log
1
|zi| ≥

∑

|zi|<1−ρ

log
1
|zi|

≥ ρν̃N (1− ρ)
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since if 0 ≤ ρ ≤ 1, then for all |zi| ≤ 1− ρ, log(1/|zi|) ≥ ρ, and by definition
there are ν̃N (1− ρ) such terms in the sum.

We also have the following trivial upper bound

max
ϕ∈[0,2π]

|PN (eiϕ)| ≤
N∑

k=0

|ak|,

and so

ρν̃N (1− ρ) ≤ 1
2π

∫ 2π

0
log |PN (eiϕ)| dϕ− log |a0|

≤ log

(
N∑

k=0

|ak|
)
− log |a0|

which gives equation (4).

To estimate the number of zeros lying outside the closed disc of radius
(1− ρ)−1, note that if z0 is a zero of the polynomial PN (Z) =

∑N
k=0 akZ

k,
then 1/z0 is a zero of the polynomial QN (Z) := ZNPN

(
1
Z

)
= aN +aN−1Z+

. . .+a0Z
N . Therefore, the number of zeros of PN (Z) outside the closed disc

of radius 1/(1−ρ) equals the number of zeros of QN (Z) inside the open disc
of radius 1− ρ. Therefore, from (4) we get

1
N

νN (1/(1− ρ)) ≤ 1
Nρ

(
log

(
N∑

k=0

|ak|
)
− log |aN |

)

which gives equation (5).

Since
N − νN (ρ) = ν̃N (1− ρ) + νN (1/(1− ρ))

we immediately get (6). ¤

To deal with the asymptotic distribution of the arguments of the zeros of
random polynomials (that is, to show the angles are uniformly distributed)
we use a result of Erdős and Turan [7]:

Lemma 4 (Erdős-Turan). Let (ak)0≤k≤N be a sequence of complex numbers
such that a0aN 6= 0. For 0 ≤ θ < φ ≤ 2π, let νN (θ, φ) denote the number of
zeros of P (Z) =

∑N
k=0 akZ

k which belong to the sector θ ≤ arg z < φ. Then
∣∣∣∣
1
N

νN (θ, φ)− φ− θ

2π

∣∣∣∣
2

≤ C

N

[
log

N∑

k=0

|ak| − 1
2

log |a0| − 1
2

log |aN |
]

for some constant C

Remark. By considering the example PN (Z) = (z − 1)N , we observe that
C > 1/ log 2.

Combining Lemmas 3 and 4 yields the following proposition:



8 C.P. HUGHES AND A. NIKEGHBALI

Proposition 5. Let (ak)0≤k≤N be a sequence of complex numbers which
satisfy a0aN 6= 0. Denote the zeros of the polynomial

PN (Z) =
N∑

k=0

akZ
k

by zi (for i from 1 to N), and for 0 ≤ ρ ≤ 1 let

νN (ρ) := # {zi : 1− ρ ≤ |zi| ≤ 1/(1− ρ)}
and for 0 ≤ θ < φ < 2π let

νN (θ, φ) := # {zi : θ ≤ arg (zi) < φ}
Then, for 0 ≤ α(N) ≤ N

(
1− 1

N
νN

(
α(N)

N

))
≤ 2

α(N)

(
log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

)

(7)
and there exists a constant C such that

∣∣∣∣
1
N

νN (θ, φ)− φ− θ

2π

∣∣∣∣
2

≤ C

N

(
log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

)

(8)

Remark. Note again that the same function

log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

controls both the clustering of the zeros near the unit circle, and the uniform
distribution of the arguments of the zeros.

Remark. Note that for any complex coefficients ak,

log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN | ≥ log 2

Therefore, this method cannot detect when all the zeros are on the unit
circle.

Remark. Note that if ak 7→ λak for some λ 6= 0, then the zeros of PN (Z) are
unchanged, and

log

(
N∑

k=0

|λak|
)
− 1

2
log |λa0| − 1

2
log |λaN |

= log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

so, in some sense, this is a natural function to control the location of the
zeros.
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We are interested in the zeros of sequences of random polynomials. Let
(Ω,F ,P) be a probability space on which the array of random variables,
(aN,k) N≥1

0≤k≤N
, is defined. From this sequence we construct the random poly-

nomial

PN (Z) =
N∑

k=0

aN,kZ
k.

We require no independence restriction on our random variables. We only
assume that

P [aN,0 = 0] = 0 (9)
and

P [aN,N = 0] = 0, (10)
for all N .

We recap the various types of convergence which we will see in this project:
we say that XN converges in probability to X if for all ε > 0, P{|XN −X| >
ε} → 0 as N → ∞; we say that XN converges in the pth mean to X if
E [|XN −X|p] → 0 as N → ∞; we say that XN converges almost surely to
X if for all ω ∈ Ω \ E (where E, called the exceptional set, is a measure
zero subset of the measurable sets Ω), limN→∞XN (ω) = X(ω). The fact
that almost sure convergence for bounded variables implies the convergence
in the pth mean is a classical result in probability theory (see, for example,
[11]). The fact that convergence in the mean square implies convergence in
probability follows from Chebyshev’s inequality.

4. Uniform clustering results for roots of random polynomials

Now we give several results for the uniform clustering of the zeros of
random polynomials.

Theorem 6 (Main theorem). For N ≥ 1, let (aN,k)0≤k≤N be an array of
random complex numbers such that P [aN,0 = 0] = 0 and P [aN,N = 0] = 0
for all N . Denote the zeros of the polynomial

PN (Z) =
N∑

k=0

aN,kZ
k

by zi, and for 0 ≤ ρ ≤ 1, let

νN (ρ) := # {zi : 1− ρ ≤ |zi| ≤ 1/(1− ρ)}
and for 0 ≤ θ < φ < 2π, let

νN (θ, φ) := # {zi : θ ≤ arg (zi) < φ}
Let

FN := log

(
N∑

k=0

|aN,k|
)
− 1

2
log |aN,0| − 1

2
log |aN,N | (11)
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If
E [FN ] = o(N) as N →∞ (12)

then there exists a positive function α(N) satisfying α(N) = o(N) such that

lim
N→∞

E
[

1
N

νN

(
α (N)

N

)]
= 1

and

lim
N→∞

E
[

1
N

νN (θ, φ)
]

=
φ− θ

2π

In fact the convergence also holds in probability and in the pth mean, for all
positive p.

Furthermore, if there exists a (deterministic) positive function α(N) sat-
isfying α(N) ≤ N for all N , such that

FN = o(α(N)) almost surely (13)

then

lim
N→∞

1
N

νN

(
α (N)

N

)
= 1, a.s.

and
lim

N→∞
1
N

νN (θ, φ) =
φ− θ

2π
, a.s.

Remark. It is clear that the only way for a sequence of polynomials not
to have zeros which cluster uniformly to the unit circle is if there exists a
constant c > 0 such that E [FN ] > cN for an infinite number of N .

Proof. The convergence in mean for νN (α(N)/N) is a consequence of (7).
We have

1− E
[

1
N

νN

(
α(N)

N

)]
≤ 2

α(N)
E [FN ]

Therefore we see that the result follows for any positive function α(N) satis-
fying α(N) ≤ N for all N such that E [FN ] /α(N) → 0, and such a function
exists by assumption (12).

Similarly from (8) and (12) we have that

E

[∣∣∣∣
1
N

νN (θ, φ)− φ− θ

2π

∣∣∣∣
2
]
≤ C

N
E [FN ]

= o(1)

Note that the mean square convergence implies convergence in the mean,
as in the theorem, and also convergence in probability. Note further, that
since the random variables are uniformly bounded (0 ≤ 1

N νN (θ, φ) ≤ 1),
mean convergence implies convergence in the pth mean for all positive p.

In the same way, the almost sure convergence of 1
N νN (α(N)/N) and

1
N νN (θ, φ) follows immediately from (7) and (8), using (13). ¤



ZEROS OF RANDOM POLYNOMIALS 11

We shall now give some examples for which the hypotheses of Theorem 6
are satisfied.

Corollary 6.1. Let (aN,k) be an array of random complex numbers which
satisfy (9) and (10). Assume that E [log |aN,0|] = o(N), and E [log |aN,N |] =
o(N), and that there exists a fixed s > 0 and a sequence εN tending to zero
such that

sup
0≤k≤N

E [|aN,k|s] ≤ exp(εNN)

Then, there exists an α(N) = o(N) such that FN , defined in (11), satisfies
E [FN ] = o(α(N)), and so

lim
N→∞

E
[

1
N

νN

(
α (N)

N

)]
= 1

and

lim
N→∞

E
[∣∣∣∣

1
N

νN (θ, φ)− φ− θ

2π

∣∣∣∣
]

= 0

Proof. It is a consequence of Theorem 6 and the following chain of concavity
inequalities:

E

[
log

(
N∑

k=0

|aN,k|
)]

=
1
s
E

[
log

(
N∑

k=0

|aN,k|
)s]

≤ 1
s
E

[
log

(
N∑

k=0

|aN,k|s
)]

≤ 1
s

log

(
N∑

k=0

E [|aN,k|s]
)

≤ 1
s

log ((N + 1) exp(εNN))

=
1
s

(log(N + 1) + NεN ) = o(N)

since we assume εN → 0 as N →∞. Therefore FN , defined in (11), satisfies
FN = o(N), and the result follows from Theorem 6. ¤

Remark. The Corollary shows that under some very general conditions (just
some conditions on the size of the expected values of the modulus of the coef-
ficients), without assuming any independence or equidistribution condition,
the zeros of random polynomials tend to cluster uniformly near the unit
circle. We can also remark that we do not assume that our coefficients must
have density functions: they can be discrete-valued random variables.

Example. Let aN,k be a random variables distributed according to the
Cauchy distribution with parameter N(k + 1). The first moment does not
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exist but some fractional moments do, and in particular we have for 0 ≤ s <
1

E [|aN,k|s] =
N(k + 1)

π

∫ ∞

−∞

|x|s
x2 + N2(k + 1)2

dx

=
1
π

N s(k + 1)sΓ(
1
2

+
s

2
)Γ(

1
2
− s

2
)

Moreover,
E [log |aN,k|] = log(N(k + 1))

Hence we can apply Corollary 6.1 and deduce that the zeros of the sequence
of random polynomials with coefficients (aN,k) N≥1

0≤k≤N
where aN,k are chosen

from the Cauchy distribution with parameter N(k + 1) cluster uniformly
around the unit circle.

Example. We can also interpret this result for sequences of deterministic
polynomials, since then E [|aN,k|] = |aN,k|. For example, for every sequence
of polynomials with nonzero bounded integer coefficients, we have for all
ρ ∈ (0, 1), limN→∞ 1

N νN (ρ) = 1 and similarly limN→∞ 1
N νN (θ, φ) = φ−θ

2π .
Indeed, one can take ρ = α(N)/N for any sequence α(N) ≤ N such that
log N/α(N) → 0.

Corollary 6.2. Let (εN ) be a sequence of positive real numbers, which sat-
isfies limN→∞ εN = 0. Let (aN,k) be an array of complex random variables
such that for each N , exp(−εNN) ≤ |aN,k| ≤ exp (εNN) for all k.

Then there exists a deterministic positive function α(N) = o(N) such that

lim
N→∞

1
N

νN

(
α (N)

N

)
= 1, a.s.

and
1
N

νN (θ, φ) → φ− θ

2π
, a.s.

The convergence also holds in the pth mean for all positive p.

Proof. With the hypotheses of the corollary, we have that

FN := log

(
N∑

k=0

|aN,k|
)
− 1

2
log |aN,0| − 1

2
log |aN,N |

≤ log((N + 1) exp(εNN))− log(exp(−εNN))

≤ 2εNN + log(N + 1)

and so for any positive function α(N) satisfying α(N) ≤ N and 2εNN +
log N = o(α(N)) (for example, α (N) =

√
εNN + log2 N), the result follows

from the second half of Theorem 6. ¤
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Example. Let (aN,k), for fixed N , and 0 ≤ k ≤ N , be discrete random
variables taking values in {±1, . . . ,±N}, not necessarily having the same
distribution; then

lim
N→∞

1
N

νN

(
log1+γ (N)

N

)
= 1, a.s., ∀γ > 0

1
N

νN (θ, φ) → φ− θ

2π
, a.s.

As a special case, we have the well known random polynomials of the form∑N
k=0 µkZ

k, with µk = ±1, with probabilities p and (1− p). Moreover, we
have from the Markov inequality, the following rate for the convergence in
probability:

P
[(

1− 1
N

νN

(
α(N)

N

))
> ε

]
≤ 1

ε

C log N

α(N)

P
[∣∣∣∣

1
N

νN (θ, φ)− φ− θ

2π

∣∣∣∣ > ε

]
≤ 1

ε2

C log N

N

where ε > 0.

4.1. Self inversive polynomials. The Theorem 6 also gives us an inter-
esting result for self-inversive polynomials. These polynomials are of interest
in physics (see [5]) and in random matrix theory (characteristic polynomials
of random unitary matrices).

A polynomial P (Z) =
∑N

k=0 akZ
k is said to be self-inversive if

aNP (Z) = a0Z
NP (1/Z)

where z denotes the complex conjugate of z, and P (Z) = P (Z). This implies

ak =
a0

aN
aN−k

for all k. One can see that the zeros of self-inversive polynomials lie either
on the unit circle or are symmetric with respect to it, that is, if z is a zero,
so is 1/z. So, with the notations of Theorem 3, we just have to check that
1
N ν̃N

(
1− α(N)

N

)
tends to zero.

Corollary 6.3. Let
(
PN (Z) =

∑N
k=0 aNkZ

k
)∞

N=1
be a sequence of random

self inversive polynomials satisfying

• P [aN,0 = 0] = 0 for all N
• E [log |aN,0|] = o(N)
• There exists a fixed s > 0 and a positive sequence εN tending to zero

as N →∞ such that for all N , E [|aN,k|s] ≤ exp(εNN) for all k
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then there exists a function α(N) ≤ N such that

lim
N→∞

E
[

1
N

νN

(
α (N)

N

)]
= 1,

lim
N→∞

E
[∣∣∣∣

1
N

νN (θ, φ)− φ− θ

2π

∣∣∣∣
]

= 0

In fact the convergence holds in the pth mean for any positive p.

Proof. It is a consequence of Corollary 6.1. ¤

Remark. Usually, one is interested in the case where |aN,0| = 1; in this case
there is only one condition to check: that for all N , E [|aN,k|s] ≤ exp(εNN)
for all k.

Remark. We can also prove results about almost sure convergence as in the
general case.

4.2. The derivative of the characteristic polynomial. The character-
istic polynomial of a random unitary matrix was introduced by Keating and
Snaith [13] as a model to understand statistical properties of the Riemann
zeta function, ζ(s). We can apply the methods developed in this paper to
study the location of the zeros of the derivative of the characteristic poly-
nomial, first considered by Mezzadri [16] in order to model the horizontal
distribution of the zeros of ζ ′(s). Having a good understanding of the loca-
tion of the zeros of ζ ′(s) is important, because if there are no zeros to the
left of the vertical line Re(s) = 1/2, then the Riemann Hypothesis would be
true.

Denote the characteristic polynomial of an N ×N unitary matrix M by

ΛM (Z) = det (M − ZI)

=
N∑

k=0

(−1)kScN−k(M)Zk,

where Scj denotes the jth secular coefficient of the matrix M . Since all the
zeros of ΛM (Z) lie on the unit circle, it follows that ΛM (Z) is self-inversive.
The derivative is given by

Λ′M (Z) =
N−1∑

k=0

(−1)k+1(k + 1)ScN−k−1(M)Zk.

We will use the following fact about secular coefficients averaged over Haar
measure, due to Haake et. al. [9]:

E
[
Scj(M)Sck(M)

]
=

{
1 if j = k

0 otherwise
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and so

E

[
N−1∑

k=0

(k + 1)2 |ScN−1−k(M)|2
]

=
1
6
N(N + 1)(2N + 1)

Furthermore, ScN−1(M) = detMTrM , and so

E [log |ScN−1(M)|] = E [log |TrU |] ≤ 1
2

logE
[|TrU |2] =

1
2

log 2

Therefore, Theorem 6.1 allows us to deduce that if α(N) tends to infinity
faster than log N , then

lim
N→∞

E
[

1
N

νN

(
α (N)

N

)]
= 1

By completely different methods, which are special to Λ′M (Z), Mezzadri
[16] has previously shown that the zeros cluster (in fact his results give an
asymptotic expansion for the rate of clustering).

5. Classical Random Polynomials

Let us now consider the special, but very important, case of the classical
random polynomials as mentioned in the first section, that is

PN (Z) =
N∑

k=0

akZ
k (14)

These polynomials have been extensively studied (see, for example, [2] or
[8] for a complete account). The uniform clustering of the zeros have often
been noticed in some special cases of i.i.d. coefficients, as in [10], [12], [17]
for example (but these papers are concerned with the density distribution
of the zeros as is mentioned in section 2), and it has been proved in more
general cases by Arnold [1] in the case of equidistributed coefficients, and
by Shmerling and Hochberg [18] in the case of independent and non equidis-
tributed coefficients. We shall now see that we can recover and improve the
results in [1] and [18].

The results of the previous section take a simpler form in the special case
of random polynomials of the form (14). The conditions (9) and (10) become

P [aN = 0] = 0, for all N ≥ 0 (15)

We will restate Theorem 6 for this classical case.

Theorem 7. Let (ak)k≥0 be a sequence of complex random variables which
satisfy (15). Let

FN := log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |
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If
E [FN ] = o(N) as N →∞

then there exists a positive function α(N) satisfying α(N) = o(N) such that

lim
N→∞

E
[

1
N

νN

(
α (N)

N

)]
= 1

and

lim
N→∞

E
[

1
N

νN (θ, φ)
]

=
φ− θ

2π

In particular, the convergence also holds in probability and in the pth mean,
for all positive p, since 0 ≤ 1

N νN (α(N)/N) ≤ 1 and 0 ≤ 1
N νN (θ, φ) ≤ 1.

Furthermore, if there exists a (deterministic) positive function α(N) sat-
isfying α(N) ≤ N for all N , such that

FN = o(α(N)) almost surely

then

lim
N→∞

1
N

νN

(
α (N)

N

)
= 1, a.s.

and

lim
N→∞

1
N

νN (θ, φ) =
φ− θ

2π
, a.s.

Remark. Again, we can observe that the result holds for the special case
νN (ρ), for fixed ρ ∈ (0, 1). One simply takes α(N) = ρN .

Theorem 7 shows that under some very general conditions (assuming nei-
ther independence nor equidistribution) we have a uniform clustering of the
zeros of random polynomials near the unit circle.

Example. We shall now present two examples to show that our results are
not completely sharp. Denote by ν̃N (r) the number of zeros in the disc of
radius r centered at 0. Using classical results about random polynomials
with coefficients (an) which are i.i.d. standard Gaussian ([8], [17]), it can be
shown that as N →∞

E
[

1
N

ν̃N

(
1− α(N)

N

)]
∼





1
2α(N) if α(N) →∞

1
2α(N) − 1

exp(2α(N))−1 if α (N) → α 6= 0

1/2 if α(N) → 0

If the zeros are to cluster, then we must have E
[

1
N ν̃N

(
1− α(N)

N

)]
→ 0.

Hence in this case we must have α(N) → ∞. However, there exists a con-
stant c > 0 such that E[FN ] > c log N , and we can only deduce clustering
from our results when α(N)/ log N →∞. This is not surprising since our re-
sults are presented in great generality, and if one knows specific information
about the distribution of the ak it is plausible that specialized techniques
would give more information about clustering.
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Our second example concerns polynomials which have all their roots on
the unit circle, for example ZN − 1. Since for any polynomial, FN ≥ log 2,
our results can only deduce clustering when α(N) → ∞, despite the fact
that in this case it holds true for any α(N) ≥ 0.

We will now show some cases where Theorem 7 allows us to deduce almost
sure convergence of the zeros to the unit circle.

Theorem 8. Let (an)n≥0 be a sequence of complex random variables. As-
sume that there exists some s ∈ (0, 1] such that

∀k µk := E [|ak|s] < ∞
and for some 0 < δ ≤ 1 there exists t > 0, such that for all N

∀N ξN := E
[

1
|aN |t

11{|aN |≤δ}

]
= O (N q) (16)

for some q > 0. Assume further that:

lim sup
k→∞

(µk)
1/k = 1

or, equivalently, there exists a sequence (εN ) tending to zero such that

N∑

k=0

µk = exp(NεN ).

Then for any deterministic positive sequence α(N) satisfying α(N) = o(N)
and α(N)

NεN+log N →∞,

lim
N→∞

1
N

νN

(
α (N)

N

)
= 1, a.s.

and

lim
N→∞

1
N

νN (θ, φ) =
φ− θ

2π
, a.s.

In fact the convergence also holds in the pth mean for every positive p.

Proof. Note that (16) implies P{|ak| = 0} = 0. Therefore, from Theorem 7
it is sufficient to prove that for the choice of α(N) = o(N) given in the
theorem,

1
α(N)

(
log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

)
→ 0 a.s.
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For 0 < δ ≤ 1 we have

log 2 ≤ log

(
N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN | ≤

1
s

log

(
1 +

N∑

k=0

|ak|s
)

+
1
2t

(
log

1
|a0|

)
11{|a0|≤δ} +

1
2t

(
log

1
|aN |

)
11{|aN |≤δ}

+ log
1
δ

so since α(N) →∞, it is sufficient to show that

1
α(N)

log

(
1 +

N∑

k=0

|ak|s
)

= 0 a.s

and
1

α(N)

(
log

1
|aN |t

)
11{|aN |≤δ} = 0 a.s.

We are first going to prove that limN→∞ 1
α(N) log

(
1 +

∑N
k=0 |ak|

)
= 0,

a.s. for our sequence α (N).

Consider first the case when
∑∞

k=0 µk is finite. By the monotone conver-
gence theorem, the sum

∑N
k=0 |ak|s converges almost surely as N → ∞ to

an integrable random variable X. Therefore, since α(N) tends to infinity as
N →∞, we see that

lim
N→∞

1
α(N)

1
s

log

(
1 +

N∑

k=0

|ak|s
)

= 0 a.s.

We can thus assume that
∑∞

k=0 µk = ∞. Given ε > 0, take β > 0 such
that log (1 + β) ≤ ε/3. As lim supk→∞ (µk)

1
k = 1, and µk < ∞ for all k,

there exists a constant C = C(β) such that for all k we have µk ≤ C (1 + β)k.
Hence, for N sufficiently large,

0 ≤ log

(
N∑

k=0

µk

)
≤ log C + (N + 1) log (1 + β)− log (β)

Thus,

0 ≤ 1
N + 1

log

(
N∑

k=0

µk

)
≤ 1

N + 1
log C + log (1 + β)− 1

N + 1
log (β)

There exists N ′ such that for N ≥ N ′,
1

N + 1
log C ≤ ε/3

1
N + 1

| log β| ≤ ε/3
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Hence, for all ε > 0, we found N0 = max (N ′, k0), such that for all N ≥ N0

we have 1
N+1 log

(∑N
k=0 µk

)
≤ ε, which implies log

(∑N
k=0 µk

)
= o (N). We

can thus write for N ≥ 0:

log

(
N∑

k=0

µk

)
= εNN

with εN → 0 and εNN →∞.

Since (N + 1)2/(k + 1)2 ≥ 1 for all 0 ≤ k ≤ N , we have

log

(
1 +

N∑

k=0

|ak|s
)

≤ log

(
1 + (N + 1)2 exp (εNN)

N∑

k=0

|ak|s exp (−εNN)
(k + 1)2

)

≤ 2 log (N + 1) + εNN + log

(
1 +

N∑

k=0

|ak|s exp (−εNN)
(k + 1)2

)

Now, as
N∑

k=0

µk = exp (εNN) ,

we have
∞∑

k=0

E
[ |ak|s exp (−εNN)

(k + 1)2

]
≤

∞∑

k=0

1
(k + 1)2

< ∞

We deduce from the monotone convergence theorem that

N∑

k=0

|ak|s exp (−εNN)
(k + 1)2

converges almost surely to an integrable random variable. Hence, taking
α(N) to be any positive function such that

α(N)
εNN + log N

→∞

we have

lim
N→∞

1
α (N)

log

(
1 +

N∑

k=0

|ak|s
)

= 0, a.s.

Now, let us show that for the same sequence α(N), we have

1
α(N)

(
log

1
|aN |t

)
11{|aN |≤δ} = 0, a.s.
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From (16) we have

0 ≤ log
(

1
|aN |t

)
11{|aN |≤δ} ≤ log

(
1 +

1
|aN |t

11{|aN |≤δ}

)

≤ (q + 2) log (N + 1) + log
(

1 +
1

(N + 1)q+2 |aN |t
11{|aN |≤δ}

)

From the Markov inequality, we have, for any ε > 0:

P
[(

1
(N + 1)q+2 |aN |t

11{|aN |≤δ}

)
> ε

]
≤ 1

ε

ξN

(N + 1)q+2

As ξN = O (N q), for N large enough,

P
[(

1
(N + 1)q+2 |aN |t

11{|aN |≤δ}

)
> ε

]
≤ 1

ε

C

(N + 1)2

for some positive constant C. Hence by the Borel-Cantelli lemma,
1

(N + 1)q+2 |aN |t
11{|aN |≤δ} → 0 a.s.

We can conclude that if α(N) goes to infinity faster than log N (which our
choice of α(N) does), then

lim
N→∞

1
α (N)

(
log

(
1

|aN |t
)

11{|aN |≤δ}

)
= 0, a.s.

and the theorem follows. ¤
Corollary 8.1. Let (an)n≥0 be a sequence of complex random variables such
that the moduli (|an|) are from p different probability distributions on the
positive real line, say (Fj (dx))1≤j≤p. Assume that there exists some s > 0
such that ∫ ∞

0
xsFj (dx) < ∞

and that there exists some 0 < δ ≤ 1 such that there exists some t > 0 such
that ∫ δ

0
x−tFj (dx) < ∞

for any δ ∈ (0, 1]. Then for any deterministic positive sequence α(N) =
o (N) such that α(N)/ log N →∞,

lim
N→∞

1
N

νN

(
α (N)

N

)
= 1, a.s.

and
lim

N→∞
1
N

νN (θ, φ) =
φ− θ

2π
, a.s.

In fact the convergence also holds in the pth mean for every positive p.

Proof. This is immediate from Theorem 8. ¤
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Corollary 8.2. Let (an)n≥0 be a sequence of complex random variables such
that the moduli (|an|) have densities which are uniformly bounded in a neigh-
borhood of the origin. Assume that there exists some s ∈ (0, 1] such that

∀N, µN ≡ E [|aN |s] < ∞
lim sup

k→∞
(µk)

1
k = 1

Then there exists a deterministic sequence α (N) = o (N) such that

lim
N→∞

1
N

νN

(
α (N)

N

)
= 1, a.s.

and
lim

N→∞
1
N

νN (θ, φ) =
φ− θ

2π
, a.s.

In fact the convergence also holds in the pth mean for every positive p.

Proof. It suffices to notice that in this special case, supN ξN ≤ C for some
positive constant C. ¤

Example. Let PN (Z) =
∑N

k=0 akZ
k, with ak being distributed on R+ with

Cauchy distribution with parameter k−σ, σ > 0. This distribution has
density

2
πkσ

1
x2 + k−2σ

on the positive real line. The conditions of Theorem 8 are satisfied since

µk := E
[
a

1/2
k

]
≤ C

kσ and ξN := E
[

1

a
1/2
N

11{|aN |≤1}

]
≤ Ckσ. Therefore, if

α(N) = o(N) is such that α(N)/ log N →∞, then

lim
N→∞

1
N

νN

(
α (N)

N

)
= 1, a.s.

and
lim

N→∞
1
N

νN (θ, φ) =
φ− θ

2π
, a.s.

Again, the convergence also holds in the pth mean for every positive p.

We can still weaken the hypotheses and still have mean convergence.

Proposition 9. Let (an)n≥0 be a sequence of complex random variables.
Assume that there exists some s ∈ (0, 1] such that

∀N, µN ≡ E [|aN |s] < ∞
lim sup

k→∞
(µk)

1
k = 1

and some t > 0, such that

∀N, ξN ≡ E
[

1
|aN |t

11{|aN |≤δ}

]
< ∞
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for any δ ∈ (0, 1], and
log (1 + ξN ) = o (N)

Then:

lim
N→∞

E
[(

1− 1
N

νN

(
α (N)

N

))p]
= 0, ∀p > 0

for some sequence α (N) = o (N), 0 < α(N) < N and

lim
N→∞

E
[∣∣∣∣

1
N

νN (θ, φ)− φ− θ

2π

∣∣∣∣
p]

= 0, ∀p > 0

Proof. We first go through the same arguments as previously for the mean
convergence and then conclude to the pth mean convergence because of the
boundedness of 1

N νN

(
α(N)

N

)
and 1

N νN (θ, φ). ¤

Again, as in the previous section, we can specialize our results to the
special case of deterministic coefficients.

Proposition 10. Let (εn) be a sequence of positive real numbers tending
to zero, and let (an)n≥0 be a sequence of complex numbers such that for all
n ≥ 1

exp (−εnn) ≤ |an| ≤ exp (+εnn)

Then there exists a positive function α(N) = o(N) such that zeros of the
polynomial

∑N
k=0 akZ

k satisfy

lim
N→∞

1
N

νN

(
α (N)

N

)
= 1

lim
N→∞

1
N

νN (θ, φ) =
φ− θ

2π
,

6. Convergence of the empirical measure

In this section, we study the convergence of the random empirical measure
associated with the zeros of a random polynomial. We use elementary results
about convergence of probability measures that can be found in textbooks
such as [15], [3].

Let
(
PN (Z) =

∑N
k=0 aN,kZ

k
)∞

N=1
be a sequence of random polynomials,

such that P{aN,0 = 0} = 0 and P{aN,N = 0} = 0. Let (zk)1≤k≤N denote the
zeros of PN (Z). Let

µN ≡ 1
N

N∑

k=1

δzk
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denote the empirical (random) probability measure associated with the zeros
on C∗ = C\ {0}. For every continuous and bounded function,

∫
f dµN ≡ 〈f, µN 〉 =

1
N

N∑

k=1

f (zk)

Recall that a sequence of probability measures (λn) is said to converge
weakly to a probability measure λ if for all bounded and continuous func-
tions f , ∫

f dλN →
∫

f dλ

or with our notations:
〈f, λN 〉 → 〈f, λ〉 (17)

As C∗, endowed with the metric d (z1, z2) ≡ |z1 − z2|+
∣∣∣ 1
z1
− 1

z2

∣∣∣, is a locally
compact polish space, we can in fact take the space CK (C∗) of continuous
functions with compact support as space of test functions in (17). Following
Bilu [4] we call a function f : C∗ → C standard, if

f
(
reiϕ

)
= g (r) exp (ipϕ)

where g : R∗+ → C is continuous and compactly supported, and p ∈ Z.

Lemma 11. The linear space, generated by the standard functions, is dense
in the space of all compactly supported functions C∗ → C (with the sup-
norm).

Proof. See [4]. ¤
Corollary 11.1. Let (λn) be a sequence of probability measures on C∗, and
λ one more probability measure on C∗. Assume that

〈f, λN 〉 → 〈f, λ〉, N →∞
for any standard function. Then (λn) converges weakly to λ.

Proposition 12. Let
(
PN (Z) =

∑N
k=0 aNkZ

k
)∞

N=1
be a sequence of ran-

dom polynomials.

(1) If

lim
N→∞

1
N

νN

(
α (N)

N

)
= 1, a.s.

and
1
N

νN (θ, φ) → φ− θ

2π
a.s.

then the sequence of random measures (µN ) converges almost surely
weakly to the Haar measure on the unit circle, that is to say for all
bounded continuous functions f : C∗ → C, we have:

〈f, µN 〉 → 1
2π

∫ 2π

0
f(eiϕ) dϕ, a.s
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(2) If

lim
N→∞

E
[

1
N

νN

(
α (N)

N

)]
= 1

and

lim
N→∞

E
[∣∣∣∣

1
N

νN (θ, φ)− φ− θ

2π

∣∣∣∣
]

= 0

then the sequence of measures (µN ) converges in mean weakly to the
Haar measure on the unit circle, that is to say for all continuous
functions f : C∗ → C , we have:

lim
N→∞

E
[∣∣∣∣〈f, µN 〉 − 1

2π

∫ 2π

0
f(eiϕ) dϕ

∣∣∣∣
]

= 0

In fact the convergence holds in the pth mean, for all positive p.

Proof. By corollary 11.1, we need only prove this result for standard func-
tions.

We will first prove part (1), the almost sure convergence case. Let f(z)
be a standard function, that is f

(
reiϕ

)
= g (r) eipϕ where g : R+ → C and

p ∈ Z. We must distinguish between two cases when p = 0 and when p 6= 0.

When p = 0, we have to prove that 〈f, µN 〉 → g (1) almost surely.
As g is continuous, ∀ε > 0, there exists δ > 0, such that for all r ∈
[1− δ, 1/(1− δ)] , |g (r)− g (1)| < ε. Denoting D = [1− δ, 1/(1− δ)] and
‖g‖∞ = supr>0 |g (r)|, we then have

|〈f, µN 〉 − g (1)| =
1
N

∣∣∣∣∣∣
∑

|zk|∈D
(g (|zk|)− g (1)) +

∑

|zk|/∈D
(g (|zk|)− g (1))

∣∣∣∣∣∣

≤ 1
N

νN (1− δ) ε + 2 ‖g‖∞
(

1− 1
N

νN (1− δ)
)

The result then follows from the assumption that limN→∞ 1
N νN (1− δ) = 1,

a.s.

Now consider the case when p 6= 0. As 1
2π

∫
g (1) exp (ipϕ) dϕ = 0 we

must show
lim

N→∞
|〈f, µN 〉| = 0 a.s.

For this, we notice that:
∣∣∣∣∣
1
N

N∑

k=1

f (zk)

∣∣∣∣∣ =
1
N

∣∣∣∣∣
N∑

k=1

g (|zk|) exp (ipϑk)

∣∣∣∣∣

≤ |g (1)|
N

∣∣∣∣∣
N∑

k=1

exp (ipϑk)

∣∣∣∣∣ +
1
N

N∑

k=1

|g (|zk|)− g(1)|
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where ϑk is the argument of zk in [0, 2π). As 1
N νN (θ, φ) → φ−θ

2π a.s., we can
apply Weyl’s theorem for uniformly distributed sequence of real numbers to
deduce that

lim
N→∞

1
N

∣∣∣∣∣
N∑

k=1

exp (ipϑk)

∣∣∣∣∣ = 0, a.s.

We have already shown that limN→∞ 1
N

∑N
k=1 |g (|zk|)− g(1)| = 0, a.s., and

this completes the proof of part (1).

Part (2) of the theorem concerns the case of mean convergence. As before,
we let f

(
reiϕ

)
= g (r) exp (ipϕ) be a standard function, and again we must

distinguish between p = 0 and p 6= 0. The proof in the case p = 0 does not
change. Indeed, we still have

|〈f, µN 〉 − g (1)| ≤ νN (1− δ)
N

ε + 2
N − νN (1− δ)

N
‖g‖∞

leading to

E [|〈f, µN 〉 − g (1)|] ≤ E
[

1
N

νN (1− δ)
]

ε + 2E
[
1− 1

N
νN (1− δ)

]
‖g‖∞

→ 0 as N →∞

For the case p 6= 0, we still have
∣∣∣∣∣
1
N

N∑

k=1

f (zk)

∣∣∣∣∣ ≤
|g (1)|

N

∣∣∣∣∣
N∑

k=1

exp (ipϑk)

∣∣∣∣∣ +
1
N

N∑

k=1

|g (|zk|)− g(1)|

Hence

E

[∣∣∣∣∣
1
N

N∑

k=1

f (zk)

∣∣∣∣∣

]

≤ E
[
|g (1)|

N

∣∣∣∣∣
N∑

k=1

exp (ipϑk)

∣∣∣∣∣

]
+

1
N
E

[
N∑

k=1

|g (|zk|)− g(1)|
]

Again, the case p = 0 shows that

lim
N→∞

1
N
E

[
N∑

k=1

|g (|zk|)− g(1)|
]

= 0

and so to complete the proof, we just have to show that

lim
N→∞

E

[
1
N

∣∣∣∣∣
N∑

k=1

exp (ipϑk)

∣∣∣∣∣

]
= 0

which follows from the following lemma. ¤
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Lemma 13. If

lim
N→∞

E
[∣∣∣∣

1
N

νN (θ, φ)− φ− θ

2π

∣∣∣∣
]

= 0

and if f(z) = g(arg z) where g is a continuous function defined on the torus
R/2πZ, we have

lim
N→∞

E
[∣∣∣∣〈f, µN 〉 − 1

2π

∫ 2π

0
f(eiϕ) dϕ

∣∣∣∣
]

= 0 (18)

Proof. We can assume that f is real valued; otherwise we would consider
the real and imaginary parts. In the special case when f(z) = 11[θ,φ)(arg z),

(18) is exactly our assumption: limN→∞ E
[∣∣∣ 1

N νN (θ, φ)− φ−θ
2π

∣∣∣
]

= 0. It is
easy to see that (18) holds for finite linear combination of such functions,
and hence for step functions. Now, if g is continuous, for any ε > 0 , there
exist two step functions g1 and g2 such that g1 ≤ g ≤ g2, and

1
2π

∫ 2π

0
(g2(ϕ)− g1(ϕ)) dϕ ≤ ε

For simplicity, let g := 1
2π

∫ 2π
0 g (ϕ) dϕ. Letting f(z) = g(arg z), f1(z) =

g1(arg z) and f2(z) = g2(arg z) we then have

〈f1, µN 〉 − g1 − (g − g1) ≤ 〈f, µN 〉 − g ≤ 〈f2, µN 〉 − g2 − (g − g2)

Hence:

|〈f, µN 〉 − g| ≤ |〈f2, µN 〉 − g2|+ |〈f1, µN 〉 − g1|+ (g − g1) + (g2 − g)

and
E |〈f, µN 〉 − g| ≤ E |〈f2, µN 〉 − g2|+ E |〈f1, µN 〉 − g1|+ 2ε

The lemma follows from the fact that limN→∞ E [|〈fj , µN 〉 − gj |] = 0, for
j = 1, 2 by the assumption of the lemma. ¤

Corollary 13.1. In each case of convergence of the proposition, we have in
fact:

lim
N→∞

E
[∣∣∣∣〈f, µN 〉 − 1

2π

∫ 2π

0
f(eiϕ) dϕ

∣∣∣∣
p]

= 0
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E-mail address: nikeghba@ccr.jussieu.fr


