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Abstract

Markov chain Monte Carlo (MCMC) algorithms are ubiquitous in Bayesian com-
putations. However, they need to access the full data set in order to evaluate the
posterior density at every step of the algorithm. This results in a great computa-
tional burden in big data applications. In contrast to MCMC methods, Stochastic
Gradient MCMC (SGMCMC) algorithms such as the Stochastic Gradient Langevin
Dynamics (SGLD) only require access to a batch of the data set at every step. This
drastically improves the computational performance and scales well to large data
sets. However, the difficulty with SGMCMC algorithms comes from the sensitivity
to its parameters which are notoriously difficult to tune. Moreover, the Mean
Square Error (MSE) scales as O(c−

1
3 ) as opposed to standard MCMC O(c−

1
2 )

where c is the computational cost.
We introduce a new class of Multilevel Stochastic Gradient Markov chain Monte
Carlo algorithms that are able to mitigate the problem of tuning the step size and
more importantly of recovering theO(c−

1
2 ) convergence of standard Markov Chain

Monte Carlo methods without the need to introduce Metropolis-Hasting steps. A
further advantage of this new class of algorithms is that it can easily be parallelised
over a heterogeneous computer architecture. We illustrate our methodology using
Bayesian logistic regression and provide numerical evidence that for a prescribed
relative MSE the computational cost is sublinear in the number of data items.

1 Introduction

In recent years there has been an increasing interest in methods for Bayesian inference which are
scalable to Big Data settings. Contrary to optimisation-based or maximum likelihood settings,
where one looks for a single point estimation of parameters, Bayesian methods attempt to obtain a
characterisation of the full posterior distribution over the unknown parameters and latent variables
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in the model. This approach allows for a better characterisation of the uncertainties inherent to the
learning process as well as providing protection against over fitting.

One of the most widely used classes of methods for Bayesian posterior inference is Markov Chain
Monte Carlo (MCMC). This class of algorithms mixes slowly in complex, high dimensional-models
and scales poorly to large data sets [3]. In order to deal with these issues, a lot of effort has been
placed on developing MCMC methods that provide more efficient exploration of the posterior, such
as Hamiltonian Monte Carlo (HMC) [6, 16] and its Riemannian manifold variant [12].

Stochastic gradient variants of such continuous-dynamic samplers have been shown to scale very well
with the size of the data sets, as at each iteration they use data subsamples (also called minibatches)
rather than the full dataset. Stochastic gradient Langevin dynamics (SGLD) [21] was the first
algorithm of this kind showing that adding the right amount of noise to a standard stochastic gradient
optimisation algorithm leads to sampling from the true posterior as the step size is decreased to zero.
Since its introduction, there have been a number of articles extending this idea to different samplers
[4, 15, 5], as well as carefully studying the behaviour of the mean square error (MSE) of the SGLD
for decreasing step sizes and for a fixed step size [20, 19]. The common conclusion of these papers is
that the MSE is of order O(c−

1
3 ) for computational cost of c (as opposed to O(c−

1
2 ) rate of MCMC).

The basic idea of Multilevel Monte Carlo methodology is to use a cascade of decreasing step-sizes. If
those different levels of the algorithm are appropriately coupled, one can reduce the computational
complexity without a loss of accuracy.

In this paper, we develop a Multilevel SGLD (ML-SGLD) algorithm with computational complexity
of O(c−

1
2 ), hence closing the gap between MCMC and stochastic gradient methods. The underlying

idea is based on [18] and its extensions are:

• We build an antithetic version of ML-SGLD which removes the logarithmic term present in
[18] and makes the algorithm competitive with MCMC.

• We consider the scaling of the computational cost as well as the number of data items N .
By using a Taylor based stochastic gradient, we obtain sub-linear growth of the cost in N .

• By introducing additional time averages, we can speed up the algorithm further.

The underlying idea is close in spirit to [1] where expectations of the invariant distribution of an
infinite dimensional Markov chain is estimated based on coupling approximations.

This article is organised as follows. In Section 2, we provide a brief description of the SGLD algorithm
and the MLMC methodology to extent, which will allow us to sketch in Section 3 how these two
ideas can be enmeshed in an efficient way. Next we describe three new variants of the multilevel
SGLD with favourable computational complexity properties and study their numerical performance
in Section 4. Numerical experiments demonstrate that our algorithm is indeed competitive with
MCMC methods which is reflected in the concluding remarks in Section 5.

2 Preliminaries

2.1 Stochastic Gradient Langevin Dynamics

Let θ ∈ Rd be a parameter vector where π(θ) denotes a prior distribution, and π(x|θ) the density of
a data item x is parametrised by θ. By Bayes’ rule, the posterior distribution of a set of N data items
X = {xi}Ni=1 is given by

π(θ|X) ∝ π(θ)

N∏
i=1

π(xi|θ).

The following stochastic differential equation (SDE) is ergodic with respect to the posterior π(θ|X)

dθt =

(
∇ log π(θt) +

N∑
i=1

∇ log π(xi|θt)

)
dt+

√
2dWt, θ0Rd (1)

where Wt is a d-dimensional standard Brownian motion. In other words, the probability distribution
of θt converges to π(θ|X) as t→∞. Thus, the simulation of (1) provides an algorithm to sample
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from π(θ|X). Since an explicit solution to (1) is rarely known, we need to discretise it. An application
of the Euler scheme yields

θk+1 = Sh,ξk(θk), Sh,ξ(θ) := θ + h

(
∇ log π(θ) +

N∑
i=1

∇ log π(xi|θ)

)
+
√

2hξ

where ξk is a standard Gaussian random variable on Rd. However, this algorithm is computational
expensive since it involves computations on all N items in the dataset. The SGLD algorithm
circumvents this problem by replacing the sum of the N likelihood terms by an appropriately
constructed sum of n� N terms which is given by the following recursion formula

θk+1 = Sh,,τk,ξk(θk), Sh,τ,ξ(θ) := θ + h

(
∇ log π(θ) +

N

n

n∑
i=1

∇ log π(xτi |θ)

)
+
√

2hξ (2)

with ξ being a standard Gaussian random variable on Rd and τ = (τ1, · · · , τs) is a random subset
of [N ] = {1, · · · , N}, generated for example by sampling with or without replacement from [N ].
Notice that this corresponds to a noisy Euler discretisation. In the original formulation of the SGLD
in [21] decreasing step sizes {h0 ≥ h1 ≥ h2 ≥ . . .} were used in order to obtain an asymptotically
unbiased estimator. However, the MSE is only of order O(c−

1
3 ) for the computational cost of c [19].

2.2 Multilevel Monte Carlo

Consider the problem of approximating E[g] where g is a random variable. In practically relevant
situations, we cannot sample from g, but often we can approximate it by another random variable
gM at a certain associated cost(gM ), which goes to infinity as M increases. At the same time
lim
M→∞

EgM → Eg, so we can have a better approximation, but at a certain cost. The typical biased

estimator of E[g] then has the form

ĝN,M =
1

N

N∑
i=1

g(M,i). (3)

Consequently, the cost of evaluating the estimator is proportional to N · cost(gM ). According to the
Central Limit theorem, we need to set N ε−2 ·Var(gM ) to get the standard deviation of the estimator
ĝN,M less than ε.

Now consider just two approximations gM and gK , where K < M . It is clear, that the cost of one
sample for gM−gK is roughly proportional to cost(gM ). We assume that V1 = Var(gM ) ≈ Var(gK)
and V2 = Var(gM − gK) where V2 < V1. Then based on the identity EgM = EgK + E(gM − gK),
we have

ḡN1,N2,M,K =
1

N 1

N1∑
i=1

g(K,i) +
1

N 2

N2∑
j=1

(
g(M,j) − g(K,j)

)
.

We see that the overall cost of the Monte Carlo estimator ḡN1,N2,M,K is proportional to

cost(ḡN1,N2,M,K) = ε−2 ·
(
cost(gK) · V1 + cost(gM ) · V2

)
,

so implying the condition

1 >
costk
costL

+
V2
V1

, we obtain that cost(ĝN,M ) > cost(ḡN1,N2,M,K). The idea behind this method, which was intro-
duced and analyzed in [14], lies in sampling gM − gK in a way, that Var(gM − gK) < Var(gM ).
This approach has been independently developed by Giles in a seminal work [9], where a MLMC
method has been introduced in the setting of stochastic differential equations.

MLMC takes this idea further by using L ≥ 2 independent clouds of simulations with approximations
of a different resolution. This allows the recovery of a complexity O(ε−2) (i.e variance N−1/2). The
idea of MLMC begins by exploiting the following identity

E[gL] =

L∑
l=0

E[gl − gl−1], with g−1 := 0. (4)
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In our context gl := g(θMl

T ), g : Rd → R, with {θMl

T }, defined in (2), l = 0 . . . L.
L∑
l=0

{
1

Nl

Nl∑
i=1

∆(i,l)

}
, ∆(i,l) := g

(i,l)
l − g(i,l)l−1

where g(i,l)l = g((xMl

T )(i)) are independent samples at level l. The inclusion of the level l in the
superscript (i, l) indicates that independent samples are used at each level l and between levels. Thus,
these samples can be generated in parallel.

Efficiency of MLMC lies in the coupling of g(i,l)l and g(i,l)l−1 that results in small Var[∆(i,l)]. In
particular, for the SDE in (1), one can use the same Brownian path to simulate gl and gl−1 which,
through the strong convergence property of the scheme, yields an estimate for Var[∆(i,l)]. More
precisely it is shown in Giles [9] that under the assumptions1∣∣E[gl − gl−1]| = O(hαl ), Var[gl − gl−1] = O(hβl ), (5)
for some α ≥ 1/2, β > 0, the expected accuracy under a prescribed computational cost c is
proportional to

ε �


c−

1
2 , β > γ,

c−
1
2 log2(c), β = γ,

c−
α

2·α+γ−β , 0 < β < γ

where the cost of the algorithm at each level l is of order O(h−γl ).

The main difficulties in extending the approach in the context of the SGLD algorithm is a) the fact
that T →∞ and therefore all estimates need to hold uniformly in time; b) coupling SGLD dynamics
across the different levels in time c) coupling the subsampling across the different levels. All of these
problems need serious consideration as naive attempts to deal with them might leave (4) unsatisfied,
hence violating the core principle of the MLMC methodology.

3 Stochastic Gradient based on Multi-level Monte Carlo

In the following we present a strategy how the two main ideas discussed above can be combined in
order to obtain the new variants of the SGLD method. In particular, we are interested in coupling
the dicretisations of (1) based on the step size hl with hl = h02−l. Because we are interested in
computing expectations with respect to the invariant measure π(θ|X), we also increase the time
endpoint Tl ↑ ∞ which is chosen such that Tl/h0 ∈ N. Thus, sl = Tl/hl ∈ N.

We introduce the notation
Sh,τ1:sl ,ξ1:sl (θ0) = Sh,τsl ,ξsl (. . . , Sh,τ1,ξ1(θ0))

where ξ denotes the Gaussian noise and τ the index of the batch data. We would like to exploit the
following telescopic sum

Eg
(
Sh,τ1:θ0 ,ξ1:s0 (θ0)

)
+
∑
l

Eg
(
Shl,τ1:sl ,ξ1:sl (θ0)

)
− Eg

(
Shl−1,τ1:sl−1

,ξ1:sl−1
(θ0)

)
.

We have the additional difficulty of different hl and hl−1 stepsizes and simulation time Tl. First, the
fine path is initially evolving uncoupled for Tl−Tl−1

hl
time steps. The coupling arises by evolving both

fine and coarse paths jointly, over a time interval of length Tl − Tl−1, by doing two steps for the finer
level denoted by θ(f,i) (with the time step hi) and one on the coarser level denoted by θ(c,l) (with the
time step hl−1) using the discretisation of the averaged Gaussian input for the coarse step.

This coupling makes use of the underlying contraction 2 (Equation (6)) as illustrated in Figure 1. This
shifting coupling was introduced in [13] for coupling Markov chains. In [18, 7] it is shown that (6)
holds if the posterior is strongly log-concave. This is sufficient but not necessary and holds for a
much wider class of problems [8].

1Recall hl denotes the size of the step of the algorithm (2).
2The property that we use is that solutions to (1) started from two different initial conditions θ10 and θ2 with

the same driving noise satisfy

E|θ1t − θ2t |2 ≤ |θ10 − θ20|e−Lt, L > 0. (6)
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Figure 1: Behaviour of numerical paths of (1) when the appropriate coupling is used

This property implies that the variance of

∆(i,l) := g

(
θ
(f,l,i)
Tl−1
hl−1

)
− g

(
θ
(c,l,i)
Tl−1
hl−1

)
for suitably chosen Tl−1 would remain small, thus allowing an application of the MLMC methodology.
We will drop i appropriately.

3.1 Multi-level SGLD

As common in MLMC we couple fine and course by path by 1√
2

(ξk,1 + ξk,2) using for the coarse
path i.e.(

θ
(f)
k+1, θ

(c)
k+1

)
=

(
S
hi,τ

(f)
k,2 ,ξk,

◦ S
hi,τ

(f)
k,1 ,ξk,1

(θ
(f)
k ), S

hl−1,τ
(c)
k,1

1√
2
(ξk,1+ξk,2)

(θ
(c)
k )

)
. (7)

One question that naturally occurs now is that if and how should one choose to couple between the
subsampling of the data? In particular, in order for the telescopic sum to be respected, one needs to
have that

L
(
τ (f,1)

)
= L

(
τ (f,2)

)
= L

(
τ (c)
)
. (8)

In order for this condition to hold we first take s independent samples τ (f,1) on the first fine-step and
another s independent s-samples τ (f,2) on the second fine-step. In order to ensure that 8) holds, we
create τ (c) by drawing s samples without replacement from

(
τ (f,1), τ (f,2)

)
. Other strategies are also

possible and we refer the reader to [18].

3.2 Antithetic Multi-level SGLD

Here we present the most promising variant of coupling on subsampling: Algorithm 2 for ti ↑ ∞.
Building on the ideas developed in [11] (see also [10]) we propose Antithetic Multi-level SGLD
which achieves an MSE of order complexityO(c−

1
2 ) for prescribed computational cost (and therefore

allows for MLMC with random truncation see [1]).

3.3 Averaging the Path

Compared to MCMC these algorithms seem wasteful because only the last step of a long simulation
is saved. The numerical performance can be improved by instead averaging of parts of the trajectory
as follows

∆
(i,l)
averaged :=

1

pl

pl∑
k=0

g

(
θ
(f,l)
tl−1
hl−1

−k

)
− 1

pl−1

pl−1∑
k=0

g

(
θ
(c,l)
tl−1
hl−1

−k

)
,

In [18, 7] it is shown that this holds if the posterior is strongly log-concave and also is satisfied by the numerical
discretisation. However, numerically this holds for a much larger class and this can be extended by considering
more complicated couplings such as the reflection coupling [8].
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1. The initial steps are characterised by ŝl = Tl−Tl−1

hl

2. set θ(c,l)0 = θ0 and θ(f,l)0 = Shl,τ−ŝl:−1
, ξ−ŝl:−1, then simulate (θ

(f,l)
· , θ

(c,l)
· ) jointly

according to(
θ
(f,l)
k+1 , θ

(c,l)
k+1

)
=

(
S
hi,τ

(f)
k,2 ,ξk,2

◦ S
hi,τ

(f)
k,1 ,ξk,1

(θ
(f,l)
k ), S

hl−1,τ
(c)
k,1

1√
2
(ξk,1+ξk,2)

(θ
(c,l)
k )

)
.

(9)
and set

∆(i,l) := g
(
θ
(f,l)
sl−1−k

)
− g

(
θ
(c,l)
sl−1−k

)
.

Algorithm 1: ML-SGLD for ti ↑ ∞

1. The initial steps are characterised by ŝl = Tl−Tl−1

hl

2. set θ(c+,l)0 = θ
(c−,l)
0 = θ0 and θ(f,l)0 = Shl,τ−ŝl:−1

, ξ−ŝl:−1, then simulate (θ
(f,l)
· , θ

(c,l)
· )

jointly according to

θ
(f,i)
k+1 = S

hl,τk,2,ξ
(f)
k,2

◦ S
hi,τ

(f)
k,1 ,ξk,1

(θ
(f,l)
k )

θ
(c+,l)
k+1 =, S

hl−1,τ
(f,1)
k,1

1√
2
(ξk,1+ξk,2)

(θ
(c,l)
k )

θ
(c−,l)
k+1 =, S

hl−1,τ
(f,2)
k,1

1√
2
(ξk,1+ξk,2)

(θ
(c,l)
k )

(10)

3. set

∆(i,l) := g

(
θ
(f,l)
tl−1
hl−1

−k

)
− 1

2

(
g

(
θ
(c+,l)
tl−1
hl−1

−k

)
+ g

(
θ
(c−,l)
tl−1
hl−1

−k

))
.

Algorithm 2: Antithetic ML-SGLD for tl ↑ ∞

and this also applies appropriately to the antithetic version.

3.4 Taylor based Stochastic Gradient

The idea of Taylor based stochastic gradient is to use subampling on the remainder of a Taylor
approximation

N∑
i=1

∇ log p (xi|θ)

=

N∑
i=1

∇ log p (xi|θ0) +

N∑
i=1

∇2 log p(xi|θ0) (θ − θ0)

+

N∑
i=1

(
∇ log p (xi|θ)−

(
∇ log p (xi|θ0) +∇2 log p(xi|θ0) (θ − θ0)

))
≈

N∑
i=1

∇ log p (xi|θ0) +

(
N∑
i=1

∇2 log p(xi|θ0)

)
(θ − θ0) (11)

+
N

n

n∑
i=1

(
∇ log p (xτi |θ)−

(
∇ log p (xτi |θ0) +∇2 log p(xτi |θ0) (θ − θ0)

))
.
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We expect that the Taylor based stochastic gradient to have small variance for θ − θ0 small. The idea
of subsampling the remainder originally was introduced in [2]. By interopolating between the Taylor
based stochastic gradient and the standard stochastic gradient we have the best of both worlds.

4 Experiments

We use Bayesian logistic regression as testbed for our newly proposed methodology and perform a
simulation study. The data di ∈ {−1, 1} is modelled by

p(di|ιi, x) = f(yix
tιi) (12)

where f(z) = 1
1+exp(−z) ∈ [0, 1] and ιi ∈ Rd are fixed covariates. We put a Gaussian priorN (0, C0)

on x, for simplicity we use C0 = I subsequently. By Bayes’ rule the posterior π satisfies

π(x) ∝ exp

(
−1

2
‖x‖2C0

) N∏
i=1

f(yix
T ιi).

We consider d = 3 and N ∈ {100, 316, 1000, 3162, 10000} data points and choose the covariate to
be

ι =


ι1,1 ι1,2 1
ι2,1 ι2,2 1

...
...

...
ιN,1 ιN,2 1


for a fixed sample of ιi,j

i.i.d.∼ N (0, 1) for i = 1, . . . N and we take n =
⌈
N

1
3

⌉
.

It is reasonable to start the path of the individual SGLD trajectories at a mode of the target distribution.
This means that we set the x0 to be the map estimator

x0 = argmax exp

(
−1

2
‖x‖2C0

) N∏
i=1

f(yix
T ιi)

which is approximated using the Newton-Raphson method. In the following we disregard the
cost for the preliminary computations which could be reduced using state of the art optimisation
and evaluating the Hessian in parallel. In the following we use MCMC and the newly developed
MLSGLD to estimate the averaged squared distance from the map estimator under the posterior∫
R3 ‖θ − θ0‖2π(x)dx i.e. set

g(θ) = ‖θ − θ0‖2. (13)

Notice that by posterior consistency properties we expect this quantity to be have like 1
N which is

why we will consider relative MSE.

In the subsequent sections we consider N = 100, 316, 1000, 3162, 10000.

4.1 Illustration of Coupling standard, antithetic and with Taylor

We choose Tl = m(l + 1)h0, hl = 2−l and leave m ∈ N as a tuning parameter. The crucial
ingredient here is that in expectation the coarse and fine paths get closer exponentially initially and
then asymptote, with the asymptote decaying as the step size decays. This illustrated on Figures 2a.
As any MLMC algorithm performance is effected by the order β of the variance Var∆(i,l) � hβl , the
parameters m and h0 should be chosen such that the difference between pathes reaches the asymptote,
but preferrably does not spent to much time in it, as this increases the computational cost of sampling
those paths. In our experiments we setm = 5 and h0 = 1/N and on Figure 2c we see, that Algorithm
2 provides better coupling with variance decay of order 2, which is significantly better than the first
order variance decay, given by Algorithm 1. Combining Algorithm 2 with Taylor based extension
from Section 3.4 and path averaging with pl = sl/2 from Section 3.3 gives additional decrease for
the variance without affecting the rate 2. The faster variance decay leads to lower overall complexity,
as the number of samples at each level is proportional to the variance at that level. The Taylor Mean
decay rates are of the same order, which can be seen on Figure 2b, but once again Algorithm 2
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Figure 2: Coupled paths at differen levels, variance and mean decays with respect to the levels.
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Figure 3: . Scalability of the algorithms and achieved Relative MSE for for differen datasets.

combined with Taylor and path averaging is more preferable, as the multiplicative constant is lower,
than in Algorithm 1.

Numerical evidence, presented here, leads to the conclusion, that Antithetic MLSGLD with Taylor
along with Antithetic MLSGLD with Taylor and Averaging are the best competitors to MCMC
algorithm, so we procced to comparison of those algorithms.

4.2 Comparison with MCMC

We choose Metropolis-Adjusted Langevin (MALA, see [17]) as a competitor because it is based on
one Euler step of the Langevin SDE, but adds a Metropolis accept-reject step in order to preserve
the correct invariant measure (removing the requirement to decrease step size for better accuracy).
We take cost as the number of evaluation of data items, which is typically measured in epochs.
One epoch corresponds to one effective iteration through the full data set. Heuristically, for this
log-concave problem we expect the convergence rate to be independent ofN , so the only cost increase
is due to evaluating posterior density and evaluating ∇ log π(X|θ). This agrees with the findings in
Figure 3a, where the MCMC lines are almost on top of each other thus yielding the same relative
MSE for the same number of epochs for different dataset sizes. As N increases the cost per epoch
increases proportional to N . We run the MALA for 104 steps with 103 steps of burning and optimal
acceptance rate 0.574 for 50 times and then average. The various MLSGLD algorithms are ran for 50
times to achieve relative accuracies 2−k/2, k = 2, . . . , 10. This is yet another advantage of MLMC
paradigm, which allows us to control numerically the mean increments and variance at all the levels,
thus stopping the algorithm, when it has converged numerically. The most important comparison is
presented on Figure 3b, where we compare the increase of the complexity to achieve relative accuracy
of 2−5 with respect to the dataset size. We observe the sublinear growth of cost w.r.t dataset size for
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Antithetic MLSGLD with Taylor and Antithetic MLSGLD with Taylor and averaging, with the later
having a slightly better behaviour than the first one.

5 Conclusion

We develop a Multilevel SGLD algorithm with computational complexity of O(c−
1
2 ), hence closing

the gap between MCMC and stochastic gradient methods. Moreover, this algorithm scales sublinearly
with respect to the dataset size and allows natural parallelization, due to the typical properties of
Monte Carlo sampling. The benefits of parallelization are to be studied later along with further
numerical investigations for adaptive choices of parameters in the algorithm. In our further studies we
also plan to quantify analytically the gains, given by MLSGLD algorithm and extend its applicability
to a larger class of models.
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