
MOTIVIC AND ÉTALE SPANIER-WHITEHEAD DUALITY AND THE

BECKER-GOTTLIEB TRANSFER

GUNNAR CARLSSON AND ROY JOSHUA

Abstract. In this paper, we develop a theory of Becker-Gottlieb transfer based on Spanier-Whitehead duality
that holds in both the motivic and étale settings for smooth quasi-projective varieties in as broad a context as

possible: for example, for varieties over non-separably closed fields in all characteristics, and also for both the étale

and motivic settings. In view of the fact that the most promising applications of the traditional Becker-Gottlieb
transfer has been to torsors and Borel-style equivariant cohomology theories, we focus our applications to motivic

cohomology theories for torsors as well as Borel-style equivariant motivic cohomology theories, both defined with

respect to motivic spectra. We obtain several results in this direction, including a stable splitting in generalized
motivic cohomology theories. Various further applications will be discussed in forthcoming papers.
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1. Introduction

Spanier-Whitehead duality in algebraic topology is a classical result formulated and established by E. H. Spanier
and J. H. C. Whitehead in the 1950s (see [SpWh55], [SpWh58] and [Sp59]): it was shown there that finite CW
complexes have dual complexes if one works in the stable category. This lead to the theory of spectra and much
of stable homotopy theory followed. In the 1960s, Atiyah (see [At61]) showed that the Thom-spaces of the normal
bundles associated to the imbedding of compact C∞-manifolds in high dimensional Euclidean spaces provided a
Spanier-Whitehead dual for the manifold. A key application of this classical Spanier-Whitehead duality is the
construction of a transfer map for fiber bundles, due to Becker and Gottlieb, see [BG75]. The transfer turned out
to be a versatile tool in algebraic topology as it often provides stable splittings in classical stable homotopy theory,
which are very difficult to obtain otherwise: see [BG75], [Seg73], [Beck74] and [Sn81].

Though the homotopy theory of algebraic varieties in the context of motives and algebraic cycles started only
with the work of Voevodsky and Morel (see [MV99]), a closely related theory that only considers algebraic varieties
from the point of view of the étale topology has been in existence for over 40 years starting with the work of
Artin and Mazur: see [AM69]. The second author’s Ph. D thesis (see [?], [J86]) developed the theory of Spanier-
Whitehead duality in the context of étale homotopy theory. He also used this to construct a transfer map as a map
of stable étale homotopy types for proper smooth maps between algebraic varieties over algebraically closed fields:
see [J87]. However, some of the main (potential) applications of the transfer would be to non-proper, but smooth
maps, for example fiber-bundles, (as was the case with the traditional Becker-Gottlieb transfer) where the fibers
are homogeneous spaces for linear algebraic groups.

In recent years, there has been renewed interest in the homotopy theory of algebraic varieties due to the work
of Voevodsky (see [Voev03], [MV99]) on the Milnor conjecture, which introduced several new techniques and
the framework of motivic homotopy theory as in [MV99]. It is therefore natural to ask if a suitable theory of
Spanier-Whitehead duality in the framework of motivic homotopy theory could be used to construct an analogue
of the classical Becker-Gottlieb transfer and if so, if the motivic transfer is compatible with various realizations,
for example, the étale and Betti realization. In fact, as we show in sections 8 and 9, the compatibility of the
transfer with realization is key to obtaining stable splittings even in the motivic framework. The first author,
meanwhile, has been interested in descent questions for algebraic K-theory and formulated a possible approach to
understanding these questions using a variant of the Becker-Gottlieb transfer.

A general framework for constructing the Becker-Gottlieb transfer using a variant of Spanier-Whitehead duality
was discussed in [DP84] long before stable motivic homotopy theory was invented. A key idea needed here is the
notion of objects that are finite in a suitable sense so that they are dualizable.

The present paper as well as the sequels, [JP-1] and [JP-2], are devoted to exploring these ideas with the goal
of recovering a theory of Becker-Gottlieb type transfers in the motivic and étale contexts along with analogues of
several of the classical applications. In the present paper we obtain a theory of transfer in several distinct contexts:

• for actions of all linear algebraic groups on all smooth quasi-projective varieties in characteristic 0 and

• more generally for actions of all linear algebraic groups on algebraic varieties that are dualizable in an appropriate
stable homotopy theory, i.e. either motivic or étale with certain primes inverted and including large classes of
smooth varieties over perfect fields of positive characteristics.

•We show that the transfer then provides stable splittings in the appropriate stable homotopy category, whenever
possible. In particular, this applies to certain fibrations between classifying spaces of algebraic groups where the
fibers are homogeneous varieties that are dualizable, making use of Spanier-Whitehead duality in the motivic
or étale context. It should also be pointed out that, though a version of the transfer has been constructed by
Totaro (see [Tot14, Theorem 2.17]), it only holds for Chow groups of classifying spaces of linear algebraic groups
in characteristic 0: the question of stable splittings in the motivic stable homotopy category via transfer in any
characteristic, as well as the construction of a motivic transfer in positive characteristics were left open there. In
related work, Levine [Lev18] has considered transfers for fiber bundles locally trivial in the Nisnevich topology, and
with the main results on stable splitting holding only in characteristic 0. However, the construction of the transfer
there for Borel style generalized motivic cohomology theories seems not to have taken into account certain key
and subtle issues regarding the role of equivariant spectra in the construction of the transfer, as discussed on p. 5
below, and in Remark 2.10. Moreover, a comparison of the techniques used for obtaining splittings in the stable
homotopy category is also discussed on p. 4.

The most promising applications of the transfer at present seems to be to G-torsors and to the corresponding
Borel style equivariant cohomology theories defined with respect to motivic and étale spectra, which is the focus
of the current paper.
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The following are some of the main results of the paper. Let G denote a linear algebraic group acting on smooth
quasi-projective schemes X and Y of finite type over a perfect field k of arbitrary characteristic. (Here we are
not assuming that G is special in the sense of Grothendieck: see [Ch].) It is also often convenient and necessary
to consider a slightly more general situation, where X and Y will denote unpointed simplicial presheaves on the
big Nisnevich (or big étale site) of the field k, provided with an action by the linear algebraic group G. Let
Sptmot (Sptet, Sptmot,E , Sptet,E) denote the category of motivic spectra over k (the corresponding category of
spectra on the big étale site of k, the subcategory of Sptmot of E-module spectra for a commutative ring spectrum
E ∈ Sptmot and the corresponding subcategory of Sptet for a commutative ring spectrum E ∈ Sptet, respectively).
(If S = Spec k, we may often let Spt/Smot (Spt/Set) denote Sptmot (Sptet, respectively) to highlight the base field
k.) The corresponding stable homotopy category will be denoted HSptmot (HSptet, HSptmot,E and HSptet,E ,

respectively). See Definition 3.15 for further details. 1 Throughout, T will denote P1 pointed by ∞ and Tn will
denote T∧n for any integer n ≥ 0. (Similarly Gvm will denote G∧vm .)

Moreover, it is important for us that the ring-spectrum E ∈ Sptmot (E ∈ Sptet) has a lift to an equivariant
ring spectrum EG, in the sense of Terminology 3.12. For example, the usual motivic sphere spectrum ΣT lifts to
the equivariant sphere spectrum SG defined as in Definition 3.4. The only other ring spectra we consider will be
ΣT[p−1] for p = char(k), and for a fixed prime ` 6= p(= char(k)), ΣT,(`) which denotes the localization of ΣT at

the prime ideal (`), ΣT ̂̀ which denotes the completion of ΣT at the prime `. ΣT[p−1] (ΣT,(`), ΣT ̂̀) lifts to the

equivariant spectrum SG[p−1] (SG
(`), ŜG

`, respectively). In positive characteristic p, we either consider Sptmot[p
−1],

or Sptmot,E where E is any motivic ring spectrum that is `-complete for some prime ` 6= p = char(k).

We will consider the following three basic contexts:

(a) p : E→ B is a G-torsor for the action of a linear algebraic group G with both E and B smooth quasi-projective
schemes over k, with B connected and

πY : E×G (X×Y)→ E×G Y

the induced map, where G acts diagonally on Y×X. One may observe that, on taking Y = Spec k with the trivial
action of G, the map πY becomes πY : E×G X→ B, which is an important special case.

(b) BGgm,m will denote the m-th degree approximation to the geometric classifying space of the linear algebraic
group G (as in [Tot99], [MV99]), p : EGgm,m → BGgm,m is the corresponding universal G-torsor and

πY : EGgm,m ×G (Y ×X)→ EGgm,m ×G ×GY

is the induced map.

(c) If pm (πY,m) denotes the map denoted p (πY) in (b), here we let p = lim
m→∞

pm and let

πY = lim
m→∞

πY,m : EGgm ×G (Y ×X) = lim
m→∞

EGgm,m ×G (Y ×X)→ lim
m→∞

EGgm,m ×G Y = EGgm ×G Y.

Strictly speaking, the above definitions apply only to the case where G is special in the sense of Grothendieck (see
[Ch]) and when G is not special, the above objects will in fact need to be replaced by the derived push-forward
of the above objects viewed as sheaves on the big étale site of k to the corresponding big Nisnevich site of k, as
discussed in (6.2.8). However, we will denote these new objects also by the same notation throughout, except when
it is necessary to distinguish between them. For G not special, we will assume the base field is also infinite to
prevent certain unpleasant situations.

Theorem 1.1. Let f : X→ X denote a G-equivariant map and for each m ≥ 0, let πY : E×G (Y ×X)→ E×G Y
denote any one of the maps considered in (a) through (c) above. Let fY = idY × f : Y × X → Y × X denote the
induced map.

Then in case (a), we obtain a map (called the transfer )

tr(fY) : ΣT(E×G Y)+ → ΣT(E×G (X×Y))+ (tr(fY) : E ∧ (E×G Y)+ → E ∧ (E×G (X×Y))+)

in HSptmot (HSptmot,E , respectively) if ΣTX+ is dualizable in Sptmot (if E ∧ X+ is dualizable in Sptmot,E ,
respectively) having the following properties.

(i) If tr(fY)m : ΣT(EGgm,m ×G Y)+ → ΣT(EGgm,m ×G (Y × X))+ (tr(fY)m : E ∧ (EGgm,m ×G Y)+ → E ∧
(EGgm,m ×G (Y × X))+) denotes the corresponding transfer maps in case (b), the maps {tr(fY)m|m} are
compatible as m varies. The corresponding induced map lim

m→∞
tr(fY)m will be denoted tr(fY).

For items (ii) through (iv) we will assume any one of the above contexts (a) through (c).

1The homotopy category HSptmot is often denoted SH(k) in the literature. Our notation of HSptmot hopes to highlight the fact

that this is the homotopy category of motivic spectra.
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(ii) If h∗,•( , E) (h∗,•( ,M)) denotes the generalized motivic cohomology theory defined with respect to the com-
mutative motivic ring spectrum E (a motivic module spectrum M over E, respectively) then,

tr(fY)∗(π∗Y(α).β) = α.tr(fY)∗(β), α ∈ h∗,•(E×G Y,M), β ∈ h∗,•(E×G (Y ×X), E).

Here tr(fY)∗ (π∗Y) denotes the map induced on generalized cohomology by the map tr(fY) (πY, respectively).
Both tr(fY)∗ and π∗Y preserve the degree as well as the weight.

(iii) In particular, π∗Y : h∗,•(E×G Y,M)→ h∗,•(E×G (Y ×X),M) is split injective if tr(fY)∗(1) = tr(fY)∗(π∗Y(1))
is a unit, where 1 ∈ h0,0(E×G Y, E) is the unit of the graded ring h∗,•(E×G Y, E).

(iv) The transfer tr(fY) is natural with respect to restriction to subgroups of a given group. It is also natural with
respect to change of base fields, assuming taking the dual is compatible with such base-change.

(v) If h∗,•( ,M) denotes a generalized motivic cohomology theory, then the map tr(fY)
∗

: h∗,•(EGgm ×G (Y ×
X),M) → h∗,•(EGgm ×G Y,M) is independent of the choice of a geometric classifying space that satisfies
certain basic assumptions (as in 7.1: Proof of Theorem 1.1), and depends only on X, Y and the G-equivariant
map f.

(vi) Assume the base field k satisfies the finiteness conditions in (3.0.3). Let E denote a commutative ring spectrum
in Sptet which is `-complete, in the sense of Definition 1.2 (below), for some prime ` 6= char(k). If E ∧ X+

is dualizable in Sptet,E , then there exists a transfer tr(fY) in Sptet,E satisfying similar properties.
(vii) Assume the base field k satisfies the finiteness conditions in (3.0.3). Let E denote a commutative ring spectrum

in Sptmot which is `-complete. Let ε∗ : Sptmot → Sptet denote the map of topoi induced by the obvious map
from the étale site of k to the Nisnevich site of k. Then if E ∧X+ is is dualizable in Sptmot,E and ε∗(E ∧X+)
is dualizable in Sptet,E , the transfer map tr(fY) is compatible with étale realizations, and for groups G that
are special, ε∗(tr(fY)) = tr(ε∗(fY)).

The transfer map in the above theorem is constructed by combining a pre-transfer map defined utilizing a suitable
notion of Spanier-Whitehead duality with the Borel construction for the linear algebraic group in question. It also
makes use of certain key properties of Thom-spaces of algebraic vector bundles as discussed in the appendix. The
construction of the transfer is worked out in detail in section 6 and its key properties worked out in section 7. Then
the statement in (i) is verified by an explicit construction: see Step 2 of (6.2). The first statement in (ii) in the
Theorem follows readily from a naturality property for the corresponding transfer with respect to change of linear
algebraic groups (see Proposition 7.1 and Corollary 7.5). This will imply the property (iii) and the first property
in (iv). The second statement in (ii) follows from the fact that the transfer is defined using the pre-transfer (see
Examples 2.9) which is a stable map that involves no degree or weight shifts. Property (v) is shown to hold by the
way the transfer map, tr(fY), is constructed: see 7.1. To make it independent of all the possible choices involved in

its construction is the main reason for considering equivariant spectra and the categories SptG, ŨSpt
G

, USptG:
see Remark 6.2 for more on this. The construction of the transfer in the étale framework is similar, though care has
to be taken to ensure that affine spaces are contractible in this framework, which accounts partly for the hypotheses
in (vi) and in (3.0.3). Property (vii) plays a key-role in the paper, and is discussed in the following paragraphs.

Let p : E → B denote a torsor as in Theorem 1.1. Observe that one of the main applications of the transfer
is to provide sections, whenever possible, to the induced map π∗Y (in generalized cohomology), and therefore a
stable splitting of the map induced by πY in the appropriate stable homotopy category. We provide two distinct
strategies to establish such stable splittings, each with its own advantages. (See Theorem 1.5 and Corollaries 1.6
and 1.7 where such splittings are discussed in more details.) Both start with the observation that the multiplicative
property of the transfer as in Theorem 1.1(ii) shows that in order to prove π∗Y is a split monomorphism, it suffices
to show tr(fY)∗(1) = tr(fY)∗π∗Y(1) is a unit. Both approaches also make use of the base-change property of the
transfer as in Proposition 7.1 and then reduce to checking this for simpler situations. They both apply to all linear
algebraic groups, irrespective of whether they are special (that is, in Grothendieck’s classification as in [Ch]), in
particular to all split orthogonal and finite groups, which are known to be non-special.

• Splittings via the Grothendieck-Witt ring of the base field k. In this case we make use of the base-change property
of the transfer as in Proposition 7.1 to reduce to the case where the torsor p : E→ B is trivial. When the group G
is special (is not necessarily special), this means replacing B by a Zariski open cover (étale open cover, respectively)
B′ → B, over which the torsor p trivializes. Over B′, it suffices to prove the splitting at the level of the pre-transfer,
so that it is enough to show τ∗X(1) is a unit in the Grothendieck-Witt ring of the base field in case char(k) = 0
and in the Grothendieck-Witt ring of the base field with p inverted in case char(k) = p > 0. (Here τX = τX(idX)
denotes the trace defined in Definition 2.8.)

The main advantage of this method is that it provides splittings for all generalized motivic cohomology theories,
whenever the above computation of the trace τ∗X(1) can be carried out in the Grothendieck-Witt ring of the base
field, independent of whether the group G is special.
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The main disadvantages of this method are as follows. Computing the trace associated to a scheme in the
Grothendieck-Witt ring for many schemes is extremely difficult and possibly not do-able with the present technology.
The only case where this seems do-able at present is for G/N(T), where G is a split reductive group that is special
and N(T) denotes the normalizer of a split maximal torus in G: see [Lev18] for partial results in this direction
and see [JP-1, Theorem 1.4] for a computation in the general case. Moreover, the above discussion is only for the
case the self-map f : X → X, (with X = G/N(T)) is the identity: it is far from clear how to carry out a similar
computation in the Grothendieck-Witt ring for a general self-map f, even for the same X.

• Splittings for slice-completed generalized motivic cohomology theories. This method makes strong use of the fact
that the transfer map we have constructed is a map in the appropriate stable homotopy category and, therefore
induces a map of the corresponding motivic (or étale) Atiyah-Hirzebruch spectral sequences: it suffices to show
the transfer induces a splitting at the E2-terms of this spectral sequence. The multiplicative properties of the slice
filtration that a natural pairing of the slices of a motivic spectrum lift to the category Sptmot from the corresponding
motivic stable homotopy category were verified in [Pel08]. Therefore, it follows that the motivic spectra that define
the E2-terms of the motivic Atiyah-Hirzebruch spectral sequence, that is the slices of the given motivic spectrum,
are modules over the motivic Eilenberg-Maclane spectrum H(Z). Then the multiplicative property of the transfer
as in Proposition 7.3 and Corollary 7.5 reduce to checking that we obtain a splitting for motivic cohomology.

Next, we make use of the base-change property of the transfer as in Proposition 7.1 and then reduce to checking
this for the action of trivial groups, that is for the pre-transfer. See, for example, Proposition 7.6.

At this point it is often very convenient, as well as necessary, to know that the transfer is compatible with passage
to simpler situations, for example, to a change of the base field to one that is separably or algebraically closed and
with suitable realizations, that is either the étale realization or the Betti realization. A main advantage of this
approach is that it would be only necessary to compute tr(f)∗(1) and the trace τ∗X(1) after such reductions and
realizations, which are readily do-able for a large number of schemes X: see Propositions 8.1, 8.3 and Corollary 8.2.
Another advantage is that it addresses affirmatively the important question if the pre-transfer and transfer are
compatible with such reductions and realizations. Moreover, by this method, one can allow any self-map f : X→ X
and compute the corresponding trace τX(f).

The only disadvantages for this method seems to be that we need to assume that the base B of the torsor is
connected, the object Y is a geometrically connected smooth scheme of finite type over k , and also because this
method applies to only slice-completed generalized motivic cohomology theories. However, as several important
examples of generalized motivic cohomology theories, such as Algebraic K-theory and Algebraic Cobordism are
slice-complete, there do not seem to be any serious disadvantages.

When the base scheme is a field with trivial action by the given group G, the transfer will be referred to as
the pre-transfer. The construction of the transfer for Borel-style G-equivariant generalized cohomology theories
starts off with a pre-transfer which will have to be a G-equivariant stable map, so that it can be fed into a suitable
Borel-construction. The pre-transfer is constructed by making use of Spanier-Whitehead duality as worked out in
the classical setting: see [BG75].

• Here is a particularly tricky aspect of the construction of the pre-transfer. The Spanier-Whitehead duality one
needs to use is in the setting of Sptmot, Sptet , Sptmot,E or Sptet,E and not in a corresponding category of
equivariant spectra, such as in [CJ14]. There are several reasons for this choice, some of which are:

(i) Currently one does not have Spanier-Whitehead duality for algebraic varieties in the equivariant framework,
since one does not have equivariant versions of Gabber’s refined alterations, for example.

(ii) For the construction of the transfer in the context of Borel-style generalized equivariant cohomology theories
this is all that is needed as shown, for example by [BG75]. i.e. All one needs in this context is Spanier-
Whitehead duality in a non-equivariant setting, but applied to spectra with group actions.

(iii) On the other hand, we still need the Spanier-Whitehead dual of an object with a G-action to inherit a nice
G-action and we need to use sphere-spectra which also have non-trivial G-actions. In fact, it is crucial that the
source of the co-evaluation maps will have to be G-equivariant (sphere) spectra: otherwise the spectra showing
up as the target of the co-evaluation maps will have no G-action: see Definition 3.4 and 6.1. i.e. Though
we only need a non-equivariant form of Spanier-Whitehead duality, one needs to make all the constructions
sufficiently equivariant so as to be able to feed them into the Borel construction.

(iv) In [BG75], the way these issues are resolved is by making sure the Thom-Pontrjagin collapse map (which
plays the role of the co-evaluation map) can be made equivariant. In our framework, the way we resolve
these problems is as follows. First we use G-equivariant spectra to serve as the source of the co-evaluation
maps. Then we observe that for objects in Spt, one can find functorial fibrant and cofibrant replacements
in Spt (which generically denotes Sptmot, Sptet, Sptmot,E or Sptet,E), and the functoriality implies that
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these objects come equipped with compatible G-actions. See the discussion in 3.3.13 as well as the discussion
leading up to that, starting with Definition 3.4, for further details. Therefore, the dual we define will be
making use of such functorial cofibrant and fibrant replacements and therefore, though they are the duals in
Spt, they still come equipped with nice G-actions. See Remark 2.10 for a detailed discussion of these issues.

It is precisely these issues that make it necessary for us to introduce and work with the categories ŨSpt
G

and USptG of spectra that come in between, and relate the category of equivariant spectra with the category
of ordinary spectra as in section 3.3.

(v) Moreover, though we need to use G-equivariant sphere spectra to serve as the source of the co-evaluation
map, we pass to the usual sphere spectra with no-G-action as soon as the construction of the transfer from
the pre-transfer is completed: see the details in 6.1 and 6.2.

It should be clear that Theorem 1.1 derives its strength by knowing when certain objects are dualizable in the stable
motivic or étale homotopy category and when étale realization as well as change of base fields is compatible with
taking duals, (and therefore with the transfer: see section 8), as described in Theorem 1.3 below. The compatibility
of the transfer with Betti-realization is similar and will be discussed elsewhere.

Definition 1.2. Let M ∈ Sptmot (Sptet). For each prime number `, let Z(`) denote the localization of the integers
at the prime ideal ` and let Z ̂̀ = lim

∞←n
Z/`n. Then we say M is Z(`)-local (`-complete, `-primary torsion), if each

[S1∧s ∧Tt ∧ΣTU+,M] is a Z(`)-module (Z ̂̀ -module, Z ̂̀ -module which is torsion, respectively) as U varies among

the objects of the given site, where [S1∧s∧Tt∧ΣTU+,M] denotes Hom in the stable homotopy category HSptmot

(HSptet, respectively).

Let M ∈ Sptmot (Sptet). Then one may observe that if ` is a prime number, and M is `-complete, then M is
Z(`)-local. This follows readily by observing that the natural map Z → Z ̂̀ factors through Z(`) since every prime
different from ` is inverted in Z ̂̀ . One may also observe that if E is a commutative ring spectrum which is Z(`)-local
(`-complete), then any module spectrum M over E is also Z(`)-local (`-complete, respectively). `-completion in the
motivic framework is discussed in detail in [CJ14, section 4].

Given the above framework, the following two results are now well-known:

1.1.

(i) If the field k is of characteristic 0, and X is any smooth quasi-projective scheme over k, ΣTX+ is dualizable
in the motivic stable homotopy category Sptmot.

(ii) If the field k is perfect and of positive characteristic p, and X is any smooth quasi-projective scheme over k,
ΣTX+ is dualizable in Sptmot[p

−1] which denotes Sptmot with the prime p inverted (and where the unit
is the sphere spectrum ΣT[p−1]).

The first statement is a direct consequence of the fact that the T-suspension spectra of smooth quasi-projective
varieties over a field of characteristic 0 are dualizable in the motivic homotopy category: see for example, [RO08,
Theorem 52]. The second statement is much more involved and for a proof, one needs to invoke Gabber’s theory
of refined alterations as in [K13] and [Ri13]. (See section 6 for further details.)

We then deduce the following key-result, which when fed into the last theorem, provides various stable splittings
in the motivic framework. The stable splittings are discussed in detail in Theorem 1.5 and Corollaries 1.6, 1.7.
Assume that the base scheme S = Speck, for a perfect field k satisfying the hypothesis (3.0.3). We will let k̄ denote
its algebraic closure and let S̄ = Spec k̄. Then one obtains the following maps of topoi (where the first two are
induced by the obvious morphisms of sites and the last map is induced by change of base fields):

(1.1.1) ε∗ : Spt/Smot → Spt/Set, ε̄
∗ : Spt/S̄mot → Spt/S̄et and η∗ : Spt/Set → Spt/S̄et.

Since étale cohomology is well-behaved only with torsion coefficients prime to the characteristic, one will need

to also consider the functors θ : Spt/Set → Spt/Set sending commutative ring spectra E to E
L
∧

Σε∗(T)

H(Z/`) where

H(Z/`) denotes the mod-` Eilenberg-Maclane spectrum in Sptet,ε∗(T). If ` is a fixed prime different from char(k),
and E is a commutative ring spectrum in Sptmot, we will also consider the functor sending spectra M ∈ Sptmot,E

to M ∧E E(`ν), where E(`ν) denotes the (homotopy) cofiber of the map E `
ν

→E : we will denote this functor by φE .
We will adopt the convention that the maps of topoi in (5.0.19) in fact denote their corresponding left derived
functors.

Theorem 1.3. (See Propositions 5.1, 5.4, 5.6, 5.9 and Theorem 5.7.) Let k denote a perfect field of arbitrary
characteristic satisfying the finiteness hypothesis (3.0.3) and let ` denote a prime different from char(k). Then the
following hold (adopting the terminology as in sections 2 and 4):
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(i) Let E denote a commutative ring spectrum in Sptmot which is Z(`)-local (`-complete). Then, if X is any
smooth quasi-projective variety over k, the spectrum E ∧ X+ is dualizable in Sptmot,E . In particular, this
holds for any X of the form G/H, where G is a linear algebraic group defined over k and H is a closed
subgroup and also when the spectrum E = ΣT,(`) (E = ΣT ̂̀) which denotes the localization (completion) of
the motivic sphere spectrum ΣT at the prime ideal (`) (at the prime `, respectively).

(ii) If E denotes a commutative ring spectrum on the big étale site of k which is `-complete, then E ∧ (ΣTG/H+)
is a retract of a finite cellular object in Sptet,E . Therefore, it is dualizable as an object in Sptet,E . (For

example, E could be the `-completed S1-sphere spectrum on the big étale site of Spec k.)
(iii) If E is a commutative motivic ring spectrum so that it is `-primary torsion as in Definition 1.2, then the

functors ε∗, ε̄∗ send the dualizable objects of the form E ∧X+ appearing in (i) to dualizable objects. The same
conclusion holds for the functor φE (θ) if E is a motivic ring spectrum (étale ring spectrum, respectively) that
is `-complete. If the ring spectrum E is `-complete (`-primary torsion), the functor η∗ sends the dualizable
objects E ∧X+ in (ii) (the dualizable objects of the form E ∧X+, respectively) to dualizable objects.

The first statement is proven in Theorem 5.7. The second statement is proven by first showing that E∧(ΣTG/H+)
is a compact object in Sptet,E and this requires the hypotheses on the spectrum. Then we make use of the
observation that the map G → G/H is locally trivial in the étale topology to conclude that E ∧ (ΣTG/H+) is
a retract of a finite cellular object in Sptet,E . The proof of the third statement is a bit involved and needs a
careful re-examination and analysis of the proof of (i) as in Theorem 5.7 as well as in the proofs of Propositions 5.1
and 5.4 for the special cases considered there. Moreover, the results of sections 2 through 5 set up the necessary
foundational results leading up to the main results on the transfer in sections 6 and 7.

Definition 1.4. For a smooth scheme Y (smooth ind-scheme Y = {Ym|m}), we define the slice completed gener-

alized motivic cohomology spectrum with respect to a motivic spectrum M to be ĥ(Y,M) = holim
∞←n

HNis(Y, s≤nM) '

HNis(Y,holim
∞←n

s≤nM) (ĥ(Y,M) = holim
∞←m

holim
∞←n

HNis(Ym, s≤nM) ' holim
∞←m

HNis(Ym,holim
∞←n

s≤nM)), where s≤nM is the

homotopy cofiber of the map fn+1M → M and {fnM|n} is the slice tower for M with fn+1M being the n + 1-th
connective cover of M. (HNis(Y,F) and HNis(Ym,F) denote the generalized hypercohomology spectrum with re-
spect to a motivic spectrum F computed on the Nisnevich site.) The corresponding homotopy groups for maps

from ΣT(Su ∧Gv
m) to the above spectra will be denoted ĥu+v,v(Y,M). One may define the completed generalized

étale cohomology spectrum of a scheme with respect to an S1-spectrum by using the Postnikov tower in the place
of the slice tower in a similar manner.

The following theorem and corollaries now discuss the main results on splitting in the motivic stable homotopy
category obtained using the transfer.

Theorem 1.5. Let πY : E ×G (Y × X) → E ×G Y denote a map as in one of the three cases considered in
Theorem 1.1. In case G is not special, we will also assume the field k is infinite and we will also assume the field
k satisfies the hypothesis (3.0.3). Let M denote a motivic spectrum.

(1). Then the map induced by tr(idY)∗ provides a splitting to the map π∗Y : h∗,•(E×G Y,M)→ h∗,•(E×G (Y ×
X),M) in the following cases:

(i) ΣTX+ is dualizable in the motivic homotopy category Sptmot, the trace τ∗X(1) is a unit in the Grothendieck-
Witt ring of the base field k and M denotes any motivic ring spectrum. In particular, this holds if X and Y
are smooth schemes of finite type over k and char(k) = 0, provided τ∗X(1) is a unit in the Grothendieck-Witt
ring of k.

(ii) Char(k) = p > 0. E denotes any one of the ring spectra ΣT[p−1], for a fixed prime ` 6= char(k), ΣT,(`) which
denotes the localization of ΣT at the prime ideal (`) or ΣT ̂̀ which denotes the completion of ΣT at the prime
`).

E ∧ X+ is dualizable in Sptmot,E and the corresponding trace τX : E → E is a unit in the corresponding
variant of the Grothendieck-Witt ring, that is, [E , E ], which denotes stable homotopy classes of maps from E to
E and M ∈ Sptmot,E . In particular, this holds if X and Y are smooth schemes of finite type over k, provided
τ∗X(1) is a unit in the above variant of Grothendieck-Witt ring of k.

(2). Let f : X→ X denote a G-equivariant map and let fY = idY+
∧ f : Y+ ∧X+ → Y+ ∧X+. The map induced by

tr(fY)∗ provides a splitting to the map π∗Y : ĥ∗,•(E×G Y,M)→ ĥ∗,•(E×G (Y ×X),M) in the following cases:

(i) ΣTX+ is dualizable in the motivic homotopy category Sptmot and tr(fY)∗(1) is a unit in H0,0(E×G Y,Z) ∼=
CH0(E×G Y). In particular, this holds if X and Y are smooth schemes of finite type over k and char(k) = 0,
provided tr(fY)∗(1) is a unit in H0,0(E×G Y,Z).
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If the slices of the motivic spectrum M are all weak modules (see Definition 7.4) over the motivic Eilenberg-
Maclane spectrum H(Z/`ν) (for some fixed prime ` 6= char(k) and integer ν > 0), then the same conclusion
holds if tr(fY)∗(1) is a unit in H0

et(E×G Y,Z/`ν).
(ii) A corresponding result also holds for the following alternate scenario:

(a) The field k is of positive characteristic p, ΣTX+ is dualizable in Sptmot[p
−1], M ∈ Sptmot[p

−1] and
tr(fY)∗(1) is a unit in H0,0(E×G Y,Z[p−1]) ∼= CH0(E×G Y,Z[p−1]).

(b) The field k is of positive characteristic p, E = ΣT,(`) (or E = ΣT ̂̀) for some prime ` 6= p and

E ∧X+ is dualizable in Sptmot,E , M ∈ Sptmot,E and tr(fY)∗(1) is a unit in H0,0(B,Z(`)) ∼= CH0(E×G Y,Z(`))

(H0,0(E ×G Y,Ẑ̀) ∼= CH0(E ×G Y,Ẑ̀), respectively). (Here ΣT,(`) (ΣT ̂̀) denotes the localization of the
motivic spectrum ΣT at the prime ideal (`) (the completion at `, respectively).) If the slices of the motivic
spectrum M are all weak modules (see Definition 7.4) over the motivic Eilenberg-Maclane spectrum H(Z/`ν)
(for some integer ν > 0), then the same conclusion holds if tr(fY)∗(1) is a unit in H0

et(E ×G Y,Z/`ν). In
particular, if the above hypotheses on the motivic spectrum M and tr(fY)∗(1) hold, the conclusion holds for
any smooth schemes X and Y of finite type over k.

(iii) The field k is of characteristic p ≥ 0, E denotes the `-completed S1-sphere spectrum on the big étale site of k
for some prime ` 6= p, E ∧X+ is dualizable in Sptet,E , M ∈ Sptet,E with homotopy groups being modules over

Z/`ν and tr(fY)∗(1) a unit in H0
et(E ×G Y,Z/`ν), ν ≥ 1. The slice tower is then replaced by the Postnikov

tower.

For the motivic spectrum representing Algebraic K-theory, the slice completed generalized motivic cohomology
identifies with Algebraic K-theory. For a smooth ind-scheme Y = {Ym|m}, we let its algebraic K-theory spectrum
be defined as K(Y) = holim

∞←m
{K(Ym)|m}. This provides the following corollary.

Corollary 1.6. Let πY : E×G (Y ×X)→ E×G Y and f denote maps as in Theorem 1.5.

(i) Then, π∗Y : K(E×G Y)→ K(E×
G

(Y×X)) is a split injection on homotopy groups, where K denotes the motivic

spectrum representing Algebraic K-theory, provided ΣTX+ is dualizable in Sptmot and tr(fY)∗(1) is a unit in
H0,0(E×G Y,Z) ∼= CH0(E×G Y). In particular, this holds for smooth quasi-projective schemes X, Y defined
over the field k with char(k) = 0, provided the above condition on tr(fY)∗(1) holds.

(ii) π∗Y : K(E ×G Y) ∧ M(`ν) → K(E ×G (Y × X)) ∧ M(`ν) is a split injection on homotopy groups, where

M(`ν) denotes the Moore spectrum defined as the homotopy cofiber ΣT
`ν→ΣT, provided the following hold:

the field k satisfies the hypothesis (3.0.3), ΣTX+ is dualizable in Sptmot[p
−1], and tr(fY)∗(1) is a unit in

H0
et(E×G Y,Z/`ν), with ` 6= char(k) and ν ≥ 1. In particular, this holds for smooth quasi-projective schemes

X, Y defined over the field k, with char(k) = p, provided the above condition on tr(fY)∗(1) holds.

An important corollary of Theorems 1.1, 1.5 and Corollary 1.6 is the following. (We will use the convention
that, for a linear algebraic group G, BG = BGgm,m for some large m or the corresponding colimit as m→∞.)

Corollary 1.7. 2 Let k denote a perfect field k of arbitrary characteristic ≥ 0 satisfying the hypothesis (3.0.3).
Let G denote a split connected reductive group G, and split over the field k and let T denote a split maximal torus
with N(T) denoting its normalizer. In case G is not special, we will assume k is infinite.

(i) Let ` denote a prime different from char(k). Then the map ΣTBN(T)+ → ΣTBG+ induces a split injection
on any slice completed generalized motivic cohomology theory defined with respect to a module spectrum over ΣT,(`)

as well as on Algebraic K-theory smashed with the Moore spectrum M(`ν), ν ≥ 1.

(ii) Assume char(k) = 0. Then, the map ΣTBN(T)+ → ΣTBG+ induces a split injection on any slice completed
generalized motivic cohomology theory defined with respect to a motivic spectrum as well as on Algebraic K-theory,
assuming the compatibility of the motivic transfer with the corresponding transfer on the Betti-realization.

The above theorem, in fact enables, one to restrict the structure group from G to N(T) (and then to T by ad-hoc
arguments) in several situations. Taking G = GLn, this becomes a splitting principle reducing problems on vector
bundles to corresponding problems on line bundles. The motivic Atiyah-Hirzebruch spectral sequence for certain
other motivic spectra like MGL also converge strongly, and therefore, the conclusions of the last corollaries would
extend to generalized motivic cohomology theories like Algebraic Cobordism.

2It has now been established in [JP-1, Theorem 1.6] that for G a connected split reductive group, over a perfect field of arbitrary
characteristic p, the Euler-characteristic of G/N(T), is a unit in the Grothendieck-Witt group with the prime p inverted. Therefore,

Theorem 1.5(1) shows that the conclusions of this corollary hold without having to take slice completions.
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Here is a summary of the applications of the transfer that we have already established and which should appear in
forthcoming work. In [JP-1] we establish a key remaining property of the transfer and trace, namely the additivity
property. Making use of this property for the transfer and trace, we obtain a number of further applications
such as the motivic analogues of various double coset formulae as well as a solution to the conjecture (of Morel)
that the Euler-characteristic of G/N(T) in the Grothendieck-Witt group of the base field k is 1. (Here G is a
connected split reductive group over k and N(T) is the normalizer of a split maximal torus in G.) In [JP-1], we
also establish a criterion (using actions by Gm) to see if the transfer maps stabilize for infinite families such as
{BN(T)n → BGLn|n ≥ 0}, {BN(T)n → BO(2n)|n ≥ 0}, (where N(T)n denote the corresponding normalizers of
split maximal tori), which has important applications to algebraic and Hermitian K-theory. (See [JP-2] for more on
this.) In view of these and the fact that the transfer we establish applies to actions by all linear algebraic groups,
that is without requiring them to be special, we expect several other applications to Algebraic and Hermitian
K-theory as well: see [Ho05], [Sch16], [ST15].

Here is an outline of the paper. Sections 2 and 3 of the paper are written in such a way that one can specialize them
to various different frameworks readily. Section 2 is devoted to a detailed discussion of the notion of dualizability in
a symmetric monoidal model category. We conclude section 2 with a general construction of the transfer. Section
3 sets up the framework for the remainder of the paper. Though the results in this section are of a technical
nature, it sets up an important mechanism to relate equivariant and non-equivariant spectra, which is important
for constructing a transfer in the setting of generalized Borel-style cohomology theories.

We specialize to the motivic or étale frameworks in the remaining sections. Sections 4 and 5 are devoted to
various explicit examples: section 4 briefly discusses cellular objects in the motivic and étale homotopy category
and we relate this notion to that of linear schemes and mixed Tate motives. Section 5 discusses various important
examples of dualizable objects in these homotopy categories and discusses the proof of Theorem 1.3. Section 6,
which is a key section, discusses in detail, the construction of transfer maps in the context of G-torsors for linear
algebraic groups G, and the corresponding Borel-style equivariant cohomology with respect to general motivic and
étale spectra.

We establish various key properties of the transfer in section 7: the base-change property as in Proposition 7.1
enables one to establish multiplicative properties in Proposition 7.3 and Corollary 7.5. These enable one to show
that the transfer provides the required splitting if tr(fY)∗(1) is a unit. At this point it is often very convenient and
also necessary to know that the transfer is compatible with passage to simpler situations, for example, to a change
of the base field to one that is separably or algebraically closed or with suitable realizations. This way it would
suffice to compute the traces in the simplified situations, which is often easier. Section 8 is devoted to a detailed
discussion of this approach. Section 9 then discusses the applications of the transfer to provide stable splittings
in Borel-style equivariant motivic and étale cohomology with respect to general motivic and étale spectra and for
actions of linear algebraic groups. An Appendix reviews the theory of Thom spaces and Atiyah duality both in the
motivic and étale setting.

It should perhaps be obvious that, many applications of the theory developed here are anticipated. In fact, as
discussed above, several applications already appear in [JP-1] and [JP-2]. Moreover, as pointed out earlier, Burt
Totaro (see [Tot14, 2.6]) has already used the motivic Becker-Gottlieb transfer in characteristic 0 in computing
the Chow groups of the classifying spaces of algebraic groups. The restriction to characteristic 0 was forced by the
difficulty in proving dualizability for interesting varieties in positive characteristics. Since that difficulty has been
removed in the present paper, we anticipate many more interesting applications: in fact the the Chow groups of
classifying spaces seem to serve as a testing ground for various conjectures on algebraic cycles that are torsion and
in positive characteristics (see [Tot99] and [Tot14].).

Acknowledgments. We thank Burt Totaro, Jens Hornbostel and Marco Schlichting for helpful discussions and
Pablo Pelaez for both helpful discussions and for a careful reading of the manuscript. We also thank an anonymous
reviewer of an earlier draft, several of whose suggestions, have improved our results significantly. We are also happy
to acknowledge our intellectual debt to Jim Becker and Dan Gottlieb whose work in algebraic topology many years
ago is the starting point of our work here.

2. Spanier-Whitehead duality and the construction of transfer in a general framework

We begin by recalling the basics of Spanier-Whitehead duality and at the same time clarifying certain key
concepts that appear in this framework.

2.1. Weak Dualizability, Reflexivity and Dualizability in a closed symmetric monoidal stable model
category. This section is worked out in as broad a generality as possible, so that it becomes easy to define variants
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of the transfer using different forms of duality. Though this section is clearly based on the discussion in [DP84], it
is important to point out various improvements. [DP84], predates the recent developments in the theory of spectra,
so that they were forced to work in the stable homotopy category. We will always work in a symmetric monoidal
stable model category which will often denote a category of spectra. Secondly, we have improved upon the notion
of strong dualizability as discussed in [DP84] by introducing a weaker notion, namely weak dualizability. We show
that strong dualizability is equivalent to weak-dualizability and reflexivity.

Accordingly, the basic framework for this paper will be that of a closed symmetric monoidal stable model category
which will often be denoted Spt with the monoidal product denoted ∧ and with an internal Hom functor denoted
Hom. This means the category is a model category so that its associated homotopy category is a triangulated
category and is also provided with a symmetric monoidal structure compatible with the model structure, in the
sense that the pushout-product and monoidal axioms are satisfied. (See [Hov99, Chapter 7 ], [Hov03].) HSpt
will denote the corresponding homotopy category. Then one may observe the following: (i) Spt and HSpt are
symmetric monoidal categories with the product structure denoted ∧, (ii) the category Spt has the structure of a
model category which interacts well with the monoidal structure in the sense that the pushout-product axiom and
the monoidal axiom (see [SSch98, section 3] for these) are satisfied and (iii) the model category structure is such
that the cofibration sequences and the fiber sequences coincide. We will denote the unit of the monoidal structure
by Σ. (It is clearly important that the model structure be stable so that cofiber sequences and fiber sequences
coincide.) Such cofiber sequences will henceforth be called distinguished triangles.

The right adjoint to ∧ will be denoted Hom: this is an internal hom in the category Spt, i.e. Given objects
K,X, Y ∈ Spt, one has:

(2.1.1) Hom(K,Hom(Y,X)) ∼= Hom(K ∧Y,X).

Given any object E ∈ Spt, one may functorially replace it by a cofibrant object (fibrant object, as well as by an
object that is both cofibrant and fibrant) provided with a weak-equivalence with E.

2.1.2. Conventions. (i) Henceforth we will use the convention that ∧ (Hom) in fact denotes the corresponding
derived version, which is defined by functorially replacing the appropriate arguments by cofibrant (cofibrant and
fibrant) objects. Moreover, throughout this section, the unit of the monoidal structure will be denotedtr.general Σ.
We will let D(F) = Hom(F,Σ), for F ∈ Spt.

(ii) Hom now will denote the external derived hom in the corresponding (stable) homotopy category associated to
Spt. One may letMap denote the bi-functor Sptop×Spt→ (pointed simplicial sets) provided by the simplicial
or quasi-simplicial model structure. Then Hom(X , Y ) = π0Map(X ,Y) again after X (Y) have been replaced by
a cofibrant (fibrant, respectively) object.

The following definitions originated in [DP84]. All we do here is to recall basic terminology and definitions, as
well as clarify the relationship between the various notions of duality.

Definition 2.1. An object X in Spt is reflexive if the obvious map X → DDX is a weak-equivalence. Next
observe that there is a natural map e : DX ∧X = Hom(X ,Σ)∧X → Σ given as adjoint to the identity DX → DX .

Therefore, one also has a natural map X ∧ DX → Hom(X ,X ) given as adjoint to the map X ∧DX ∧ X idX∧e→ X .
We say X is weakly dualizable if the above map X ∧DX → Hom(X ,X ) is a weak-equivalence.

Let X be weakly-dualizable. Observe that, then we obtain the isomorphisms:

Hom(Σ,X ∧DX ) = Hom(Σ,Hom(X ,X )) = Hom(X ,X ).

Let c : Σ → X ∧ DX denote the map that corresponds to the identity idX , under the above isomorphisms.
Then one may see that a weak-inverse to the last map X ∧DX → Hom(X ,X ) is given by the map Hom(X ,X )→
Hom(Σ,X ∧DX )) = X ∧DX sending f 7→ (f ∧ idDX ) ◦ c.

The notion of weak dualizability as above, does not appear in [DP84]. Instead, another notion, strong dualizability,
is discussed. We will consider the notion of strong dualizability (which we will call dualizability) mainly to clarify
this concept and will relate it to weak-dualizability.

First note that given two objects X ,Y ∈ Spt, there is a natural map DX ∧DY → D(Y ∧X ) given by the adjoint
of the pairing: DX ∧ DY ∧ Y ∧ X → DX ∧ Σ ∧ X ∼= DX ∧ X → Σ. Then X ∧ DX is self-dual if the composite
map X ∧ DX → DDX ∧ DX → D(X ∧ DX ) is a weak-equivalence. We say X is dualizable if X is reflexive and if
X ∧DX is self-dual.

Next we proceed to clarify these notions in the following propositions.
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Proposition 2.2. An object X in Spt is weakly dualizable and reflexive if and only if X is dualizable.

Proof. The key is the commutative square:

(2.1.3) X ∧DX //

��

DDX ∧DX

��
Hom(X ,X )

// Hom(X ,DDX )

Next suppose X is weakly dualizable and reflexive. Then left vertical map is a weak-equivalence since X is

weakly dualizable and the two horizontal maps are weak-equivalences because X '→DDX is a weak-equivalence
by reflexivity. Therefore, the right vertical map is also a weak-equivalence. But this identifies with the map
DDX ∧DX → Hom(X ,DDX ) = Hom(X ∧DX ,Σ) = D(X ∧DX ). Therefore, X is dualizable.

Next suppose X is dualizable. Then the fact that X is reflexive shows that both the horizontal maps in the
square (2.1.3) are weak-equivalences, while the fact that X ∧ DX is self-dual, shows that the right vertical map
in (2.1.3) is also a weak-equivalence. Therefore, the left vertical map in (2.1.3) is also a weak-equivalence, thereby
proving that X is weakly dualizable. �

Theorem 2.3. (See [DP84, 1.3 Theorem].) Let X ∈ Spt together with a map e : D′X ∧ X → Σ in HSpt (called
evaluation) for some object D′X ∈ Spt. Then the following are equivalent:

(i) The object X ∈ Spt is dualizable with D′X ' DX .

(ii) There exists a map c : Σ→ X ∧D′X in HSpt (called co-evaluation) so that the composite maps

X ' Σ ∧ X c∧idX→ X ∧D′X ∧ X idX∧e→ X ∧ Σ ' X and

D′X ' D′X ∧ Σ
idD′X∧c→ D′X ∧ X ∧D′X e∧idD′X→ Σ ∧D′X ' D′X

are both homotopic to the identity maps.

(iii) There exists a map c : Σ→ X ∧D′X in HSpt (called co-evaluation) so that for every object Z,W ∈ Spt,
the maps Hom(Z,W ∧ D′X ) → Hom(Z ∧ X ,W) given by f 7→ (idW ∧ e) ◦ (f ∧ idX ) and Hom(Z ∧ X ,W) →
Hom(Z,W ∧D′X ) given by (g ∧ idD′X ) ◦ (idZ ∧ c) are inverse isomorphisms.

Moreover, these imply that for every object Y ∈ Spt, the canonical map Y ∧ D′X → Hom(X ,Y) is a weak-
equivalence.

Proof. We merely observe that this is discussed in [DP84, 1.3 Theorem], and the proof given there carries over. �

Corollary 2.4. let X be an object in Spt. Then X is dualizable if and only if the following two conditions are
satisfied:

(i) X is reflexive (i.e. the natural map X → D(D(X )) is a weak-equivalence) and

(ii) for every object Y ∈ Spt, the canonical map Y ∧DX → Hom(X ,Y) is a weak-equivalence.

Proof. This is clear in view of the above results. �

The following result, however, seems missing in the literature. (See [RO08, proof of Theorem 52] where such a
result seems to be implicitly assumed.)

Proposition 2.5. Let X → Y → Z → X [1] denote a distinguished triangle in Spt. If two of the three objects X ,
Y, and Z are dualizable, so is the third.

Proof. Clearly it suffices to prove that Z is dualizable if X and Y are. Since X and Y are assumed to be dualizable,
one observes that the natural maps: Z ∧ DY → Hom(Y,Z) and Z ∧ DX → Hom(X ,Z) are weak-equivalences.
Now one has the commutative diagram:

Z ∧DZ //

��

Z ∧DY //

��

Z ∧DX

��

//
(Z ∧DZ)[1]

��
Hom(Z,Z)

// Hom(Y,Z)
// Hom(X ,Z)

// Hom(Z,Z)[1]

Since both rows are distinguished triangles and the middle two vertical maps are weak-equivalences, it follows that
so is the first vertical map, proving thereby that the map Z ∧DZ → Hom(Z,Z) is also a weak-equivalence. This
proves that Z is weakly dualizable if X and Y are dualizable. Now it suffices to show that Z is also reflexive.
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This follows from a commutative diagram involving the distinguished triangle X → Y → Z → X [1] and also the
corresponding distinguished triangle of the double-duals of X , Y and Z. �

Proposition 2.6. Assume that ∧ commutes with all small filtered colimits in either argument and that filtered
colimits in Spt preserve weak-equivalences. Let X ∈ Spt be dualizable. Then for any small filtered direct system
of objects {Yα|α} in Spt, the natural map colim

α
Hom(X ,Yα)→ Hom(X , colim

α
Yα) is a weak-equivalence.

Proof. Let {Yα|α} denote a small filtered direct system of objects in Spt. Since X is dualizable, we obtain the

weak-equivalence for each α : Yα ∧DX '→Hom(X ,Yα). Taking colim
α

, this provides the weak-equivalence:

colim
α

(Yα ∧DX )
'→colim

α
Hom(X ,Yα).

Since ∧ is assumed to commute with small filtered colimits, the left-hand-side identifies with colim
α

Yα ∧DX . Since

X is dualizable, this identifies with Hom(X , colim
α

Yα), so that we obtain the weak-equivalence:

colim
α
Hom(X ,Yα) ' Hom(X , colim

α
Yα).

�

Next, let T : Spt′ → Spt denote a functor between stable model categories. Then we say T is weakly monoidal
if there is a natural map T(A)⊗T(B)→ T(A⊗B), for all objects A,B ∈ Spt′. We say T is monoidal if the above
map is a weak-equivalence for all objects A and B in Spt′ and if T(I′) is weakly-equivalent to the unit of Spt.

Proposition 2.7. (See [DP84, 2.2 Theorem].) Assume that the functor T is monoidal, induces a functor of the
corresponding homotopy categories and that the object A ∈ Spt′ is dualizable, and I′ is the unit of Spt′. Then
T(A) ∈ Spt′ is dualizable and T(D(A)) ' Hom(T(A),T(I′)), where Hom again denotes the derived Hom.

2.2. Construction of the transfer in a general framework. Assume that Spt denotes a symmetric monoidal
stable model category where the monoidal structure is denoted ∧ and where the unit of the monoidal structure is
denoted Σ. We will further assume that each object X in Spt comes equipped with a diagonal map ∆ : X → X ∧X
and a co-unit map κ : X → Σ so that ∆ provides X with the structure of a co-algebra: see [DP84, section 5].

Definition 2.8. (i) Now one may define the trace associated to any self-map f : X → X of an object that is
dualizable as follows. Recall that we have denoted the evaluation map DX ∧X → Σ by e. The dual of this map is
the co-evaluation map c : Σ → X ∧ DX . Now the trace of f (denoted τX(f) or often just τ(f)) is the composition
(in HSpt)

(2.2.1) Σ
c→X ∧DX τ→DX ∧ X id∧f→ DX ∧ X e→Σ.

where τ is the map interchanging the two factors.

(ii) Then we define the transfer as the composition in HSpt:

(2.2.2) tr(f) : Σ
c→X ∧DX τ→DX ∧ X id∧∆→ DX ∧ X ∧ X id∧f∧f→ DX ∧ X ∧ X e∧id→ Σ ∧ X

(iii) If Y εSpt is another object, we will also consider the following variant tr(fY) = Y ∧ tr(f) : Y ∧Σ→ Y ∧X .

The composition DX ∧ X id∧∆→ DX ∧ X ∧ X id∧f∧f→ DX ∧ X ∧ X will often be denoted id ∧∆(f).

The remaining discussion in this section will invoke the categories of spectra considered in the next section. The
first observation, as an immediate consequence of the definition is that, if X in fact is the T-suspension spectrum
of a smooth quasi-projective variety and p : X → ΣT is the map induced by the structure map of the variety to
the base field, then, p ◦ tr(f) = τ(f). Similarly, if id ∧ p : Y ∧ X → Y ∧ ΣT = Y, the composition (id ∧ p) ◦ tr(fY)
will identify with idY ∧ τ(f). This will be denoted τ(fY). (We leave this as an (easy) exercise.)

Examples 2.9. In these examples, the diagonal ∆ and the co-unit κ are the obvious maps. Since, the evaluation,
co-evaluation and the diagonal maps involve no degree or weight shifts, the map induced by the transfer in any
generalized cohomology theory preserves both the degree and weight.

(i) Here we take Spt = SptS for the big Nisnevich site on S = Spec k, with ∧ denoting the smash product of
T-spectra based on the smash product of simplicial presheaves as in (3.0.4) so that the transfer is a stable map
tr(fY) : ΣT → ΣTX+.

(ii) Next we take Spt = Spt/S for the big Nisnevich site on S, with S any scheme and ∧ denoting a relative
smash product of T-spectra over S based on the relative smash product of simplicial presheaves as in (3.0.5), so
that the transfer should be a stable map tr(fY) : ΣTS+ → ΣTX+, inducing a corresponding stable map as in
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(i), tr(fs) : ΣTSpec k(s)+ → ΣTXs, s ∈ S. Here ΣTS+ (ΣTX+) denotes the T-suspension spectrum of S+ (X+,
respectively). However, as we point out below, it is far from clear that, then such a transfer exists: in fact it may
not exist in general!

Remark 2.10. In fact it is important to clarify the situation (ii) considered above. Assume that S is a scheme of
finite type over a field k. Then it is important to point out that the notion of Spanier-Whitehead duality in (ii) is
taking place at the level of the fibers over the base scheme S. Therefore, while the sphere spectrum Σ, which we
need to work with and viewed as an object over S, will reduce to the sphere Ts-spectrum at each point of s ∈ S, it
will in fact be often not the trivial sphere spectrum defined by TSpec k × S. Therefore, an object X ∈ Spt/S that
is such that at each s ∈ S, Xs is dualizable with respect to the Ts-sphere spectrum, may or may not be dualizable
with respect to the given sphere spectrum Σ over S which is the unit of Spt/S.

For example, let E denote a torsor for a compact Lie group G and let S = B = E/G. One may attempt to
construct a transfer by always working over S = B, i.e. for example, attempt to construct a co-evaluation map
from the sphere spectrum ΣS1 ∧ B+ on the base space B. The main problem this approach does not work, is that
then this sphere spectrum has no action by G. Therefore, one cannot hope to obtain any non-trivial co-evaluation
map with ΣS1 ∧ B+ as the source, to ΣS1,E×

G
X which is the S1-suspension spectrum of the space E×

G
X, when X is

a space with a non-trivial G-action. (A typical example here is to take X = G/H for some closed subgroup H of
G. In this case G acts transitively on X.) (This issue seems to be overlooked in [Lev18]. In fact, the transfer there
seems to be constructed starting with the usual motivic sphere spectrum which has only the trivial G-action.)

The solution, at least in principle, is to always start with a G-equivariant sphere spectrum SG (defined analogously
as in Definition 3.4) and then consider E×G SG: this would be the required sphere spectrum over B. At each fiber
over any point of B, there is a G-action, and on forgetting the G-action, the fibers SG

b clearly identify with the
usual S1-sphere spectrum (at least in the stable homotopy category).

However, a major complication now is that as SG has a non-trivial action by G, E×G SG will almost never be
the S1-suspension spectrum of B, ΣS1 ∧ B+. In order to obtain the latter starting with the former, considerable
additional work is needed, as in Steps 2 through 5 in section 6. One may compare with [BG75, section 2] where
all these issues show up and are addressed. However, there an equivariant form of the Thom-Pontrjagin collapse
simplifies their constructions. The analogous Voevodsky collapse (see Definition 10.8) seems to work well only for
smooth projective schemes. Therefore, we proceed somewhat differently and to do this systematically, one needs to
first set up a suitable framework for equivariant spectra including a suitable candidate for an equivariant motivic
sphere spectrum. The main point of the authors’ prior work [CJ14] is indeed to set-up such a framework, and we
will adapt that in the following section to provide the required equivariant framework needed for the construction
of a transfer map.

3. Basic framework for the rest of the paper

For the remainder of the paper, we will also assume that the category Spt is a stable model category associated
to a category of pointed simplicial presheaves on an (yet unspecified) category of schemes. The various possible
choices are discussed below.

We will fix a perfect field k as the base scheme B, and then restrict to the category of smooth schemes of finite
type over B. Quite often we will have to restrict to a subcategory of schemes, whose structure map to B factors
through another scheme S, which will then become the base scheme for the corresponding subcategory. In this
case, we will then always assume that the scheme S is a pointed B-scheme, i.e. provided with a map B→ S which
will be a section to the structure map S→ B.

In considering the étale site, we will always assume that the base scheme B = Spec k has the following property:

(3.0.3)
Hn

et(Spec k,Z/`ν) is finitely generated in each degree n and vanishes for n >> 0

whenever ` is a prime different from the characteristic of k and ν is any positive integer.

One may see from Lemma 5.3 how this hypothesis ensures compactness of objects on the étale site of B, which is
in fact the reason for requiring the above property.

The following are some of the main choices for the category of schemes we consider. Let S denote a smooth
pointed scheme over B. Then Sm/S denotes the category of all smooth schemes of finite type over S. This category
will be provided with either the Zariski, Nisnevich or étale topologies and the corresponding site will be denoted
Sm/SZar, Sm/SNis or Sm/Set. If B is the field of complex numbers, one also considers the local homeomorphism
topology. Here the coverings of an object U are collections {Ui → U(C)|i}, with each Ui → U(C) a quasi-finite map
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of topological spaces which are local-homeomorphisms when U(C) is provided with the transcendental topology.
Sl.h will denote the corresponding site.

Given the above choices for the categories of schemes, we have several different choices for categories of simplicial
presheaves on them.

(i) The first choice is the following. A pointed simplicial presheaf on any one of the sites considered above
will mean a simplicial presheaf P together with a map S → P. This category will have the symmetric monoidal
structure defined by the smash product, i.e. if P and Q are two objects,

(3.0.4) P ∧Q = P×Q/(S×Q ∪ P× S).

Observe also that, associated to any scheme X over S, one has the pointed scheme X+S
= X t S over S, often

denoted simply by X+. For brevity, we will denote any of the above simplicial topoi by PShS.

(ii) A second choice for the category of simplicial presheaves, (which will be important in considering fiber-wise
duality), will be the following. We will restrict to the subcategory of pointed simplicial presheaves provided with
a map to S, where S is viewed as a simplicial presheaf, by considering the presheaf of sets represented by S on any
of the above sites. Alternatively we will also consider the case where S is no longer the base scheme, but denotes
a chosen simplicial presheaf and restrict to simplicial presheaves which are provided with a chosen map to S and
also pointed over S. (An example of this appears in (6.2.8).) This subcategory will henceforth be denoted PSh/S.
Since we have already assumed that all the objects are pointed, it follows that for each object P ∈ PSh/S, there
are unique maps sP : S→ P and pP : P→ S so that the composition pP ◦ sP is the identity. Therefore, sP sends S
isomorphically to a sub-object of P, which we denote by sP(S). We next define a different monoidal structure on
PSh/S as follows. Let P,Q ∈ PSh/S. Then we let:

(3.0.5) P ∧S Q = (P×S Q)/(sP(S)×S Q ∪ P×S sQ(S)).

It may be important to point out that the term on the right is the quotient over S, i.e. the pushout of: S ←
sP(S)×S Q ∪ P×S sQ(S)→ P×S Q. We skip the verification that PSh/S with above smash product ∧S is a closed
symmetric monoidal category. If the base scheme S represents a point in the site, for example, is the spectrum of a
field for the Zariski and Nisnevich sites and is the spectrum of a separably closed field for the étale site, then every
simplicial presheaf has an obvious map to S, so that case (ii) reduces to case (i). The main difference between the
two cases is therefore, when S is a general scheme or a chosen simplicial presheaf. In this case, the smash product
∧S defines what corresponds to a fiber-wise smash product. With a view to keeping our discussion simple, we will
discuss mostly this second case. The discussion of the transfer map in section 6 (see (6.2.19) through (6.2.26)) and
Lemma 10.5 show that indeed the fiber-wise smash product is important for us.

(iii) We start with a linear algebraic group G defined over the base scheme B. We will next do a base-extension
to S, i.e. replace G by GS = G ×B S. But we will continue to denote GS by G. This way, we may assume,
without loss of generality that G ∈ PSh/S. Then we will restrict to the category of schemes with G-action, and
also to simplicial presheaves in the above categories provided with G-actions: in all of these, we will view G as the
corresponding presheaf of groups on the given site. Here it is important that the base scheme S has trivial action by
the group G so that the maps s : S→ P and p : P→ S are G-equivariant. Then maps between such G-equivariant
simplicial presheaves will be G-equivariant maps of simplicial presheaves, compatible with the structure maps s
and p. The subcategory corresponding to (i) ((ii)) will be denoted

(3.0.6) PShG
S (PShG/S, respectively).

Let U : PShG
S → PShS (PShG/S→ PSh/S, respectively) denote the forgetful functor forgetting the group action.

Observe that if P,Q ∈ PShG
S (PShG/S), then P ∧ Q (P ∧S Q, respectively) defined above (i.e. with P and Q

viewed as objects in PShS (PSh/S))) has a natural induced G-action and therefore, defines an object in PShG
S

(PShG/S, respectively). Therefore, we let the monoidal structure on PShG
S (PShG/S, respectively) be defined by ∧

as in (3.0.4) (be defined by ∧S as in (3.0.5), respectively). Similarly, if P,Q ∈ PShG
S (PShG/S), then the internal

Hom(P,Q) in PShS (PSh/S) belongs to PShG
S (PShG/S, respectively). These basically prove:

(3.0.7) U(P ∧Q) = U(P) ∧U(Q) and U(HomG(P,Q) = Hom(U(P),U(Q)),P,Q ∈ PShG
S (PShG/S),

where HomG denotes the internal hom in CG.

Proposition 3.1. Let PShS be provided with one of the model structures defined below. Let P ∈ PShG
S .

i) If P′ → U(P) is a functorial cofibrant replacement in PShS, then P′ ∈ PShG
S .

ii) If U(P)→ P′′ is a functorial fibrant replacement in PShS, then P′′ ∈ PShG
S .
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The corresponding assertions also hold for objects in PShG/S.

Proof. As the proof for (ii) is entirely similar, we will sketch the main argument for (i) only. Recall G acts on P as
a presheaf, i.e. for each scheme S in the given site, G(S) is given an action on P(S). The functoriality in the choice
of the cofibrant replacement P′ shows that each gs ∈ G(S) then has an induced action on P′(S), that the square

P′(S)
gs //

��

P′(S)

��
P(S)

gs //
P(S)

commutes, and that the corresponding squares for S′ and S, for a map S′ → S in the given site are compatible.
(See [Hov99, Definition 1.1.1] for details on functorial fibrant and cofibrant replacements.) �

3.1. Choice of Model structures. Next one has several possible choices of model structures on the categories of
simplicial presheaves PShS and PSh/S: see for example, [CJ14, section 2, Propositions 2.2 and 2.4]. For example,
one has the projective model structure, where the fibrations and weak-equivalences are defined section-wise, with
the cofibrations defined by the lifting property. One also has the injective model structure where weak-equivalences
and cofibrations are defined section-wise, with the fibrations defined by the lifting property. One of the main
advantages of the injective model structure is that every object is cofibrant and every injective map of simplicial
presheaves is a cofibration. These imply that both the smash products in (3.0.4) and in (3.0.5) are homotopy
pushouts. In view of these, we will always start with the injective model structure on the category of simplicial
presheaves. In addition, we need to modify these model structures, so that the resulting model structure satisfies
the following basic requirements:

3.1.1.

(i) a map of pointed simplicial presheaves is a weak-equivalence in the model structure if it induces a weak-
equivalence at each stalk and

(ii) the pushout-product axiom and the monoidal axiom with respect to the above monoidal structures hold.

In case we are considering the category of pointed simplicial presheaves on the Nisnevich site of the scheme S,
where weak-equivalences are defined section-wise to begin with, one needs to apply Bousfield localization with
respect to the distinguished squares to obtain the first property: see [Bl01, Lemmas 4.1 and 4.2]. In case we are
considering the category of pointed simplicial presheaves on the étale site of the scheme S, where weak-equivalences
are defined section-wise to begin with, one needs to apply Bousfield localization with respect to hypercoverings
as shown in [DHI04, section 6.3] to obtain the first property. If we begin with the projective (injective) model
structures, the corresponding localized model structure will be called the local projective (the local injective) model
structure. The pushout-product axiom is easy to verify and when every object is cofibrant, the monoidal axiom
follows from this. In general, the observations that any trivial cofibration in the local projective model structure
is a trivial cofibration in the local injective model structure and the local injective model structure satisfies the
monoidal axiom (since every object now is cofibrant) show that the local projective model structure and the local
injective model structures satisfy both the above properties.

Since one of the main focus is on motivic applications, we will always refine the weak-equivalences further by
Bousfield localization, inverting all maps of the form {pr : X × A1 → X|X}, where X varies over all the schemes
in the given site. We will perform this localization even when considering the étale sites, since A1 is acyclic in the
étale topology only with respect to constant sheaves like Z/`ν , where ` is different from the residue characteristics.

3.1.2. Key observation. The only (straight-forward) way to put a model structure on the category PShG
S

(PShG/S) is to transfer the model structure on PShS (PSh/S) by means of the underlying functor U and a left
adjoint to it. This adjoint is given by the functor sending a simplicial presheaf P to G ⊗ P (which is defined by

(G ⊗ P)(X) = ∨
G(X)

P(X). However, this will mean the cofibrant objects in PShG
S (PShG/S) will no longer be the

same as the cofibrant objects in PShS (PSh/S). As a result the RHom and the derived ∧ in the category PShG
S

(PShG/S) will be distinct from the corresponding objects in PShS (PSh/S). Recall that the notion of Spanier-
Whitehead duality we will need to use involves stable versions of the corresponding functors in the non-equivariant
framework. Therefore, we need to obtain an analogue of Proposition 3.1 for spectra: one of the main goals of the
remaining discussion in this section, is to accomplish this.
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3.2. Categories of spectra. Spectra play two distinct roles in our context:

(i) One may observe that the definition of the transfer is as a stable map of certain spectra, and its applications
are to splitting maps of generalized cohomology theories defined with respect to spectra. Here spectra
mean either motivic or étale spectra which are not necessarily equivariant. Moreover, the notion of Spanier-
Whitehead dual that is needed for the transfer is essentially in the non-equivariant setting.

(ii) In contrast, the construction of the transfer as a stable map starts with a pre-transfer, which will have to be
an equivariant map of equivariant spectra, which is then fed into the Borel-construction to obtain the transfer
for generalized (Borel-style) equivariant cohomology theories. (Equivariant spectra are defined below.)

(iii) i.e. The spectra that enter into the construction of a pre-transfer (which has to be equivariant) are all
equivariant spectra, though the transfer is applied to generalized cohomology theories that are defined with
respect to spectra that need not be equivariant. This dual role of spectra, makes it necessary for us to proceed
carefully and explaining how the two roles are related.

3.2.1. Equivariant spectra. (See [CJ14, section 3].) Throughout the following discussion, we will adopt the fol-
lowing terminology: G denote a fixed smooth affine group scheme defined over the base scheme (which we assume

again is a perfect field) and C will denote the category PSh/S, while CG will denote the category PShG/S. Here S
could be either the base scheme or a fixed simplicial presheaf, so that all the simplicial presheaves we consider will
have a chosen map to it and are pointed over S.

The G-spectra will be indexed not by the non-negative integers, but by the Thom-spaces of finite dimensional
representations of the group G. Therefore, we let SphG denote the subcategory of CG whose objects are {TV|V},
and where V varies over all finite dimensional representations of the group G and TV denotes its Thom-space.
We let the morphisms in this category be given by the maps TV → TV⊕W induced by homothety classes of k-
linear injective and G-equivariant maps V→ V ⊕W. One may observe that TV identifies with the quotient sheaf
Proj(V ⊕ 1)/Proj(V), so that there is an injection V→ TV for every G-representation V.

We also let USphG denote the category whose objects are {U(TV)|TV ∈ SphG}, where U is the forgetful functor
forgetting the G-action. The morphisms in this category are given by the maps TV → TV⊕W induced by homothety
classes of k-linear injective maps V→ V ⊕W.

We will make SphG (USphG) an enriched monoidal category, enriched over the category CG (C, respectively) as
follows. First let S0 = (Spec k)+. Then for V,W that are G-representations, we let the CG-enriched internal hom

in SphG be defined by:

HomCG(TV,TV⊕W) = ( t
α:V→V⊕W

TW) t ∗,W 6= {0}(3.2.2)

= (
∨

α:V→V

S0) t ∗,W = {0}

Here the sum varies over all homothety classes of G-equivariant and k-linear injective maps V → V ⊕W and ∗
denotes a base point added so that the above enriched Homs are pointed simplicial sets. The base points in each
of the summands TW correspond bijectively with the corresponding α and the unique 0-simplex other than the
base point in each of the summands S0 corresponds bijectively with the corresponding α, so that the 0-simplices
in HomCG(TV,TV⊕W) correspond bijectively with the morphisms TV → TV⊕W in the category underlying the

enriched category SphG. One defines the C-enriched internal hom in USphG by a similar formula as in (3.2.2):

HomC(TV,TV⊕W) = ( t
α:V→V⊕W

TW) t ∗,W 6= {0}(3.2.3)

= (
∨

α:V→V

S0) t ∗,W = {0}

where now α varies over homothety classes of k-linear injective maps V → V ⊕W. But TW no longer has any
G-action, as W is viewed simply as a k-vector space and not as an G-representation. As a result, the forgetful
functor j : SphG → USphG is a simplicially enriched functor.

Proposition 3.2. With the above definitions, the category SphG is a symmetric monoidal CG-enriched category,
where the monoidal structure is given by TV∧TW = TV⊕W. (A corresponding result holds for the category USphG.)

Proof. We first verify that SphG is a CG-enriched category. To see this, observe that if f : U → U ⊕ V is a G-
equivariant injective linear map and g : V→ V⊕W is a G-equivariant injective linear map, the composition (id⊕
g)◦ f : U→ U⊕V⊕W is an injective linear map that is also G-equivariant. The composition HomCG(TU,TU⊕V)×
HomCG(TV,TV⊕W)→ HomCG(TU,TU⊕V⊕W) sends the summand TV indexed by f and the summand TW indexed
by g to the summand TV⊕W indexed by (id⊕ g) ◦ f : U→ U⊕V⊕W. One may now see readily that this pairing

is associative and unital, so that SphG is a CG-enriched category. The monoidal structure sends (TU,TV) 7→
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TU ∧ TV = TU⊕V. One may now observe that the associativity isomorphisms (U ⊕ V) ⊕W ∼= U ⊕ (V ⊕W)
and the commutativity isomorphism U ⊕ V ∼= V ⊕ U are both G-equivariant maps. Therefore, one observes that
the monoidal structure defined by the smash product (TU,TV) 7→ TU ∧ TV = TU⊕V makes the category SphG

a CG-symmetric monoidal category. The statements regarding the C-enriched category USphG may be proven
similarly. �

Definition 3.3. (The category SptG/S, Smash products and internal Hom in SptG). We define SptG/S to denote

the CG-enriched category of CG-enriched functors SphG → CG. Observe that the CG-enriched category SphG is
symmetric monoidal with respect to the smash product of Thom-spaces. As a result (see [Day]), if X , Y are two

G-spectra, viewed as enriched functors SphG → CG, their smash product X ∧ Y defined as the left-Kan extension
with respect to the monoidal product ∧ : SphG × SphG → SphG, will define a smash product that is symmetric
monoidal on SptG/S. i.e. The smash product identifies with the following enriched co-end:

(3.2.4) X ∧ Y =

∫ Ob(SphG⊗SphG)

HomSphG(TV ∧ TW, ) ∧ X (TV) ∧ Y(TW).

The internal Hom(X ,Y) is defined by the enriched end:

(3.2.5) Hom(X ,Y)(TV) =

∫
TW∈Ob(SphG)

HomCG(X (TW),Y(TV⊕W)).

Definition 3.4. (The equivariant sphere spectrum) The equivariant sphere spectrum SG will be defined to be the

object in SptG/S given by the inclusion functor SphG → CG, that is, SG(TV) = TV, TV ∈ SphG.

One obtains entirely parallel statements on starting with the category PShG
S . The corresponding category of G-

equivariant spectra will be denoted SptG
S . Moreover, if there is no likelihood for confusion, we will often denote both

of these categories by SptG and the corresponding stable homotopy category will be denoted HSptG (associated
to the stable model structure discussed below).

Remark 3.5. When the group G is a finite group, the regular representation of G will contain all the irreducible
representations (at least in characteristic 0), so that one may define a suspension functor by taking the smash
product with the Thom-space of the regular representation. As a result one can then define symmetric G-equivariant
spectra readily as one does in the non-equivariant case. Since our interest is mainly when the group G is a linear
algebraic group of positive dimension, one cannot adopt this framework of symmetric spectra, which is why we
have defined the category SptG as above.

In case EG is a commutative ring spectrum in SptG, we will let SptG
EG denote the subcategory of SptG, consisting

of module spectra over EG and their maps. In this case, the smash product ∧ will be replaced by ∧EG which is
defined as

(3.2.6) M ∧EG N = Coeq(M ∧ EG ∧N
→→ M ∧N)

where the two maps above make use of the module structures on M and N, respectively. The corresponding internal
Hom will be denoted HomEG .

The main G-equivariant ring spectra of interest to us, other than the sphere spectrum SG, will be the following:

(3.2.7)
(i) SG[p−1] if the base scheme S is a field of characteristic p, (ii) SG

(`) and

(iii) ŜG
` , where ` is a prime different from the characteristic of the base field.

It is convenient to introduce the following intermediate categories, denoted ŨSpt
G

and USptG, intermediate

between SptG and Spt (which is defined in (3.3.8) below). The objects of the C-enriched category ŨSpt
G

are

C-enriched functors X̃ ′ : SphG → C, where C = PSh/S. One may observe that an object in this category is given by

{X̃ ′(TV)|TV ∈ SphG}, provided with a compatible family of structure maps TαW ∧ X̃ ′(TV) → X̃ ′(TW⊕V) in PSh,
as α varies over all homothety classes of k-linear injective maps V → V ⊕W. However, these maps are no longer
required to be G-equivariant. Observe that there is also a forgetful functor

(3.2.8) Ũ : SptG → ŨSpt
G

given by sending a X ∈ SptG to For ◦X , where For : PShG/S→ PSh/S is the forgetful functor. When EG ∈ SptG

is a commutative ring spectrum, one defines the category ŨSpt
G

EG similarly by replacing the pairings TW ∧
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X ′(TV) → X ′(TW⊕V) with the pairings: EG(TW) ∧ X ′(TV) → X ′(TW⊕V). Then one obtains a forgetful functor

Ũ : SptG
EG → ŨSpt

G

EG .

The objects of the C-enriched category USptG are given by C-enriched functors X ′ : USphG → C, where C denotes
the category PSh/S. Again, paraphrasing this, such an object is given by {X ′(TV)|TV ∈ USphG}, provided with
a compatible family of structure maps TαW ∧X ′(TV)→ X ′(TW⊕V) in PSh associated to each homothety class α of
k-linear injective maps of V in V⊕W, i.e. these maps are no longer required to be G-equivariant, but the k-linear
automorphisms of V act on X ′(TV). (In this sense, the category of USptG is similar to the category of what are

called orthogonal spectra.) Morphisms between two such objects {Y ′(TV)|TV ∈ SphG} and {X ′(TV)|TV ∈ SphG}
are given by compatible collections of maps {Y ′(TV) → X ′(TV)|TV ∈ SphG} which are no longer required to be
G-equivariant, but compatible with the pairings: TW ∧ Y ′(TV) → Y ′(TW⊕V) and TW ∧ X ′(TV) → X ′(TW⊕V).

When EG ∈ SptG is a commutative ring spectrum, one defines the category USptG
EG similarly by replacing the

pairings TW ∧ X ′(TV)→ X ′(TW⊕V) with the pairings: EG(TW) ∧ X ′(TV)→ X ′(TW⊕V).

3.2.9. The smash product and the internal hom of spectra in USptG and in ŨSpt
G

are defined exactly as in
the case of SptG, so that the functor Ũ is a strict symmetric monoidal functor. This means in particular that for
X ,Y ∈ SptG,

Ũ(X ∧ Y) = Ũ(X) ∧ Ũ(Y ) and Ũ(HomSptG(X ,Y)) = Hom
ŨSpt

G(Ũ(X ), Ũ(Y))(3.2.10)

Corresponding results hold for the categories SptG
EG , ŨSpt

G

EG .

Of key importance is the observation that the Ũ(SG) is the unit of the category ŨSpt
G

with respect to the

above smash product. This follows readily from the fact that ŨSpt
G

as defined above is a category of C-enriched
functors SphG → C (see [Day]). Similarly U(SG) is the unit of the category USptG with respect to the above

smash product and U(EG) is the unit of USptG
EG . In view of this, we will henceforth denote Ũ(SG) and U(SG) by

SG and U(EG) by EG.

3.3. Model structures on USptG, USptG
EG and ŨSpt

G

, ŨSpt
G

EG . Throughout this discussion, C = PSh/S
which is the category of pointed simplicial presheaves, pointed over S on either the big étale, the big Nisnevich or
the big Zariski site over the fixed base scheme (which will be a perfect field k). It will be provided with a chosen
model structure, either projective or injective and where A1 is inverted.

3.3.1. The level-wise injective model structures. Here we define a map f : χ′ → χ of spectra in USptG to
be a level-wise injective cofibration (an injective weak-equivalence) if the induced map f(TV) : χ′(TV)→ χ(TV) is
a cofibration (a weak-equivalence, respectively). The injective fibrations are defined by the lifting property with

respect to trivial cofibrations. One defines the level-wise injective model structure on the category ŨSpt
G

similarly.
The following is proven in [CJ14, Proposition 3.12]

Proposition 3.6. This defines a combinatorial (in fact, tractable) simplicial monoidal model structure on USptG

that is left proper. Every injective fibration is a level fibration. The cofibrations are the monomorphisms. The unit
of the monoidal structure on USptG and in fact every object in USptG is cofibrant in this model structure. The

corresponding results hold for the category ŨSpt
G

.

Proof. We will only discuss the proofs for the category USptG. We start with the observation that the category C
is a simplicially enriched tractable simplicial model category. The left-properness is obvious, since the cofibrations
and weak-equivalences are defined level-wise. The first conclusion follows now from [Lur, Proposition A.3.3.2]:
observe that the pushout-product axiom holds since cofibrations (weak-equivalences) are object-wise cofibrations
(weak-equivalences, respectively) and the pushout-product axiom holds in the monoidal model category C. The

second statement follows from [CJ14, Proposition 3.10(iii)]. Recall the unit of USptG is the inclusion functor

USphG → C. We will denote this by Σ. To prove it is cofibrant, all one has to observe is that Σ(TV) = TV which

is cofibrant in C for every TV ∈ SphG. �

Though the projective model structures are of less importance for us, we still need them for the comparison results
in Proposition 3.11. Therefore, we provide the following brief discussion of the projective model structure on USptG

and ŨSpt
G

. First one recalls that the unstable projective model structure on C = PSh has as generating cofibrations
(generating trivial cofibrations) all maps of the form δ∆[n]+ ∧ U+ → ∆[n]+ ∧ U+ (Λ[n]+ ∧ U+ → ∆[n]+ ∧ U+) as

U+ varies over the objects in the given site. Next we functorially replace every object TV in SphG by an object
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that is cofibrant in C. (The functoriality of the cofibrant replacement shows that then, these functorial cofibrant
replacements all come equipped with G-actions. Therefore, we will still denote these cofibrant replacements by
{TV|V}.)

The weak-equivalences (fibrations) in the level-wise projective model structure are those maps of spectra f : X →
Y, for which each f(TV) : X (TV)→ Y(TV), TV ∈ SphG, are weak-equivalences (fibrations, respectively) in C. The
cofibrations in this model structure are defined by left-lifting property with respect to the maps that are trivial
fibrations in this model structure.

Let FTV
denote the left-adjoint to the evaluation functor sending a spectrum X ∈ USptG (X ∈ ŨSpt

G

) to
X (TV). One may observe that this is the spectrum defined by

FTV
(C)(TV⊕W) = C ∧ TW and(3.3.2)

FTV
(C)(TU) = ∗,U 6= V ⊕W, for some W.

Let I (J) denote the generating cofibrations (generating trivial cofibrations, respectively) of the model category
C. We define the generating cofibrations I

ŨSpt
G (the generating trivial cofibrations J

ŨSpt
G) to be

(3.3.3)
⋃

TV∈SphG

{FTV(i) | i ∈ I}(
⋃

TV∈SphG

{FTV(j)|j ∈ J}) .

One defines the generating cofibrations IUSptG (the generating trivial cofibrations JUSptG) of the level-wise projec-

tive model structure on USptG similarly. Then the following is proven in [CJ14, Proposition 3.10] and in [CJ14,
Corollary 3.11].

Proposition 3.7. The projective cofibrations, the level fibrations and level equivalences define a cofibrantly gen-

erated model category structure on ŨSpt
G

with the generating cofibrations (generating trivial cofibrations) being
I
ŨSpt

G (J
ŨSpt

G , respectively). This model structure (called the level-wise projective model structure) has the fol-

lowing properties:

(i) Every projective cofibration (projective trivial cofibration) is a level cofibration (level trivial cofibration, re-
spectively).

(ii) It is left-proper and right proper and is cellular.

(iii) The objects in
⋃

TV∈SphG{FTV
(SphG)} are all finitely presented. The category ŨSpt

G

is symmetric monoidal
with the pairing defined in Definition 3.3.

(iv) This category is locally presentable and hence is a tractable (and hence a combinatorial) model category.

(v) With the above structure, ŨSpt
G

is a symmetric monoidal model category satisfying the monoidal axiom.

(vi) Corresponding results hold for the level-wise projective model structure on USptG.

3.3.4. Module spectra over a ring spectrum. Let EG ∈ USptG (E ∈ ŨSpt
G

) denote a ring spectrum. One then
invokes the free EG-module functor and the forgetful functor sending an EG-module spectrum to its underlying
spectrum along with [SSch98, Lemma 2.3, Theorem 4.1(2)] to obtain a corresponding cofibrantly generated model

category structure on USptG
EG (ŨSpt

G

). Observe that, in this model structure the fibrations are those maps f in

USptG
EG for which f is a fibration in USptG.

3.3.5. The stable model structures on USptG, USptG
EG and ŨSpt

G

, ŨSpt
G

EG . (See [CJ14, §3.3.2].) We
proceed to define the stable model structure by applying a suitable Bousfield localization to the level-wise injective
(projective)model structures considered above. This follows the approach in [Hov01, section 3]. We will explicitly

consider only the case of ŨSpt
G

, since essentially the same description applies to the categories USptG, USptG
EG

and ŨSpt
G

EG . The corresponding model structure will be called the the injective (projective) stable model structure.
(One may observe that the domains and co-domains of objects of the generating cofibrations are cofibrant, so that
there is no need for a cofibrant replacement functor Q as in [Hov01, section 3].)

Let X ∈ ŨSpt
G

. Since X is a C-enriched functor SphG → C, we obtain a natural map

(3.3.6) (tαTαW)+ = HomSphG(TV,TV ∧ TW)→ HomC(X (TV),X (TV⊕W))),

where TαW is a copy of TW indexed by α, and where α varies over all homothety classes of k-linear injective and
G-equivariant maps V→ V ⊕W.
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Definition 3.8. (Ω-spectra) A spectrum χ ∈ ŨSpt
G

(X ∈ ŨSpt
G

EG) is an Ω-spectrum if it is level-fibrant and each
of the natural maps χ(TV)→ HomC(T

α
W, χ(TV ∧TW)), for each α as in (3.3.6) is an unstable weak-equivalence in

the corresponding model structure on C.

Let FTV
denote the left-adjoint to the evaluation functor sending a spectrum X ∈ ŨSpt

G

to X (TV): see (3.3.2).

Let C ∈ C be an object as above and let χ ∈ USptG be fibrant in the level-wise injective model structure. Then

Map(C, χ(TV)) = Map(C, EvalTV(χ)) ' Map(FTV(C), χ) and

Map(C,HomC(TWα , χ(TV ∧ TW))) = Map(C,HomC(TWα , EvalTV∧TW
(χ))) ' Map(FTV∧TW

(C ∧ TWα), χ).

Therefore, to convert χ into an Ω -spectrum, it suffices to invert the maps in S, where

(3.3.7) S = {FTV∧TW(C ∧ TWα)→ FTV(C) | C ∈ Domains or Co-domains of I,TV,TW ∈ SphG, α}

corresponding to the above maps C ∧ TWα → C ∧ HomSphG(TV,TV ∧ TW) by adjunction, as α varies over all
homothety classes of k-linear injective G-equivariant maps V→ V⊕W. (Here I denotes the generating cofibrations

of C.) Similarly, for a commutative ring spectrum EG ∈ SptG, one lets SEG be defined using the corresponding
free-functors for EG-module-spectra. (See [Hov01, Proposition 3.2] that shows it suffices to consider the objects C
that form the domains and co-domains of the generating cofibrations in C.)

The stable injective (projective) model structure on ŨSpt
G

(ŨSptG
EG) is obtained by localizing the level-wise

injective (projective) model structure with respect to the maps in S (SEG , respectively). The S-local weak-
equivalences (S-local fibrations) will be referred to as the stable equivalences (stable fibrations, respectively). The
cofibrations in the localized model structure are the cofibrations in the level-wise projective or injective model

structures on ŨSpt
G

(ŨSptG
EG , respectively).

Proposition 3.9. (See [CJ14, Proposition 3.16].) (i) The corresponding stable model structure on ŨSpt
G

(ŨSpt
G

EG) is cofibrantly generated and left proper. It is also locally presentable, and hence combinatorial (tractable).

(ii) The fibrant objects in the stable model structure on ŨSpt
G

(ŨSpt
G

EG) are the Ω-spectra defined above.

(iii) The category ŨSpt
G

(ŨSpt
G

EG) is a symmetric monoidal model category (i.e. satisfies the pushout-product
axiom: see [SSch98, Definition 3.1]) in both the projective and injective stable model structures with the monoidal
structure being the same in both the model structures. In the injective model structure, the unit is cofibrant and the
monoidal axiom (see [SSch98, Definition 3.3]) is also satisfied.

Let Spt denote the (usual) category of motivic spectra defined as follows. Its objects are
X = {Xn ∈ PSh, along with structure maps Tm∧Xn → Xn+m|n,m ∈ N}. Morphisms between two such objects X
and Y are defined as compatible collection of maps Xn → Yn, n ∈ N compatible with suspensions by Tm, m ∈ N.
We proceed to relate the category Spt with USptG.

For each natural number n, we choose a trivial representation of G of dimension n. We will denote this
representation by n and its Thom space by Tn(= Tn). We will the identify N with the C-enriched subcategory of

USphG consisting of these objects and where

HomN(Tn,Tn+m) = Tm, if m 6= 0(3.3.8)

= S0, if m = 0.

Thus, we obtain a C-enriched faithful functor i : N → USphG, and the functor i∗ defines a simplicially enriched
functor USptG → Spt. The functor i∗ admits a left adjoint, which we denote by P : Spt→ USptG. One defines
both a projective, as well as an injective model structure on the category Spt, both level-wise and stably: see
[CJ14, section 3]. Though for the most part we will only work with the injective model structures, the projective

model structures seem helpful for comparing the model categories Spt and USptG.

The free functor Spt→ C left adjoint to the evaluation functor EvalTn
: Spt→ C, sending X 7→ X (Tn) will be

denoted FTn
. The stable model structure on Spt will be obtained by inverting maps in

(3.3.9) SN = {FTn∧Tm
(C ∧ Tm)→ FTn

(C) | C ∈ Domains or Co-domains of I,m,n ∈ N}.

Let HSpt denote the corresponding stable homotopy category. We will provide both USptG and Spt with the
projective level-wise and the corresponding projective stable model structures.
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Remark 3.10. Observe that as we apply the forgetful j : SphG → USphG, we obtain possibly several different
objects that are isomorphic in USphG. Thus one of the differences between the categories USptG and Spt is that
the indexing category for the former has possibly many more objects. A second key difference is that the simplicially
enriched hom in the category USphG has many symmetries making USphG a symmetric monoidal category and
much bigger than the indexing category for Spt. Nevertheless we proceed to show that at the homotopy category
level, the category USptG and Spt are equivalent. (This should be viewed as the analogue of the equivalence
between the homotopy categories of orthogonal spectra and spectra in the usual sense.)

We proceed to show that the C-enriched stable model categories ŨSpt
G

, USptG and Spt are Quillen equivalent.

The proof will compare both ŨSpt
G

and Spt with USptG. Since both these comparisons proceed similarly, we
deal with them both in the following proposition.

To relate the C-enriched categories, USptG and ŨSpt
G

, one first observes that there is a forgetful functor
j : SphG → USphG that sends the Thom-space, TV, of a G-representation V to TV but viewing V as just a

k-vector space. Therefore, pull-back by j defines the C-enriched functor j∗ : USptG → ŨSpt
G

. One defines a

functor P̃ as the left-adjoint to j∗. For a X ∈ ŨSpt
G

, P̃(X ) is defined as a C-enriched left Kan-extension along

the functor j : SphG → USphG. Moreover, the stable projective model structure on ŨSpt
G

is obtained from the
level-wise projective model structure by inverting maps in the collection S defined in (3.3.7).

Proposition 3.11. 3 (i) The functors P and i∗ define a Quillen adjunction between the projective stable model

structures on USptG and Spt. This is, in fact, a Quillen equivalence.

(ii) The functors P̃ and j∗ define a Quillen-equivalence between the stable projective model structures on USptG

and ŨSpt
G

.

(iii) The functors P and P̃ are strict-monoidal functors.

Proof. It should be clear that i∗ (j∗) preserves fibrations and weak-equivalences in the level-wise projective model

structures. Therefore, its left adjoint P (P̃) preserves the cofibrations and trivial cofibrations in the level-wise

projective model structures. It is also clear that i∗ sends Ω-spectra in USptG to Ω-spectra in Spt and that j∗ sends

Ω-spectra in USptG to Ω-spectra in ŨSpt
G

. Therefore, the functors P and P̃ preserve stable weak-equivalences
between cofibrant objects.

Observe next that the set of generating trivial cofibrations in the projective stable model structure on USptG

(ŨSpt
G

) is obtained by taking pushout-products of the maps in S (in the corresponding family S) with the
cofibrations of the form Λ[n]+ → ∆[n]+ and δ∆[n]+ → ∆[n]+, n ≥ 0. Similarly the set of generating trivial
cofibrations in the projective stable model structure on Spt is obtained by taking pushout-products of the maps in
SN with the cofibrations of the form Λ[n]+ → ∆[n]+ and δ∆[n]+ → ∆[n]+, n ≥ 0. Next, the adjunction between
the free functors and the evaluation functors provides the identification:

(3.3.10) P(FTn
) = Fi(Tn) and P̃(FTV

) = Fj(TV).

(This follows readily from the identifications EvalTn
(i∗(X )) = Evali(Tn)(X ) and EvalTV

(j∗(X )) = Evalj(TV)(X ).)

Therefore, it follows that P (P̃) sends the generating trivial cofibrations in the projective stable model structure on

Spt (ŨSpt
G

) to the generating trivial cofibrations in the projective stable model structure on USptG (USptG,

respectively). Since the functor P (P̃) also preserves pushouts and filtered colimits, it follows that it preserves
trivial cofibrations. Since the cofibrations in the projective stable model structure are the same as in the projective
level-wise model structure, it follows that P (P̃) also preserves these, thereby proving that the functors (P, i∗)

(P̃, j∗)) define a Quillen adjunction of the projective stable model structures on Spt and USptG (ŨSpt
G

and

USptG, respectively).

Next observe that the functor i∗ (j∗) being a right Quillen functor preserves trivial fibrations and therefore, (by
Ken Brown’s lemma: see [Hov01, Lemma 1.1.12]), it preserves all stable weak-equivalences between stably fibrant
objects. In fact a stable weak-equivalence between fibrant objects is a level-wise weak-equivalence and i∗ (j∗)
clearly preserves these. Next we already saw that i∗ (j∗) preserves Ω-spectra and therefore all stably fibrant objects.

Therefore, suppose f : X → Y is a map in USptG between stably fibrant objects, so that i∗(f) : i∗(X )→ i∗(Y) is
a stable weak-equivalence. Since both i∗(X ) and i∗(Y) are stably fibrant, this is a level-wise weak-equivalence of

3We skip the proof that the injective and projective stable model structures appearing below are Quillen equivalent, which may be

proven in the usual manner.
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spectra in Spt. i.e. The induced map i∗(f)(Tn) : i∗(X (Tn))→ i∗(Y(Tn)) is a weak-equivalence for every n. Since

the objects in USphG are also just finite dimensional k-vector spaces (i.e. without any G-action), it follows that

f itself is a level-wise weak-equivalence of spectra and therefore also a stable weak-equivalence in USptG. Stated
another way, this shows that the functor i∗ both detects and preserves stable weak-equivalences between fibrant
objects. An entirely similar argument proves that j∗ both preserves and detects stable weak-equivalences between
fibrant objects.

Next we make the following observation:

(3.3.11) i∗(FTV) = FTn , where n = dim(V) and j∗(Fj(TV)) = FTV .

One may see the first by evaluating both sides at Tm, m ∈ N and the second by evaluating both sides at TW ∈ SphG.

The next step is to show the following holds: let Q denote the fibrant replacement functor in any of the projective

stable model category structures on ŨSpt
G

, USptG and Spt. Then the functors i∗ and j∗ strictly commute with
Q in the sense

(3.3.12) Q ◦ i∗ = i∗ ◦Q and Q ◦ j∗ = j∗ ◦Q.

We will only provide a proof for the first equality, since the second equality may be proved in a similar manner.
To see this, one needs to recall how a functorial fibrant replacement is constructed making use of the small object
argument: see [Hov01, Proposition 2.1.16]. We will consider this for an object X ∈ USptG. It is defined as the

transfinite colimit of a filtered direct system of spectra Xα ∈ USptG, starting with X0 = X . In order to obtain
Xα+1 from Xα, we consider all commutative squares of the form

Aα
//

��

Xα

��
Bα

// ∗

with Aα → Bα one of the generating trivial cofibrations in the projective stable model structure. Then we let
Xα+1 be defined as the corresponding pushout, after having replaced Aα → Bα by the sum of all such maps as one
varies over the generating trivial cofibrations. Since the above pushout and the colimit are taken after evaluating
a spectrum at each object TV, it should be clear that the functor i∗ commutes with such colimits and pushouts.
Moreover, (3.3.11) shows that the functor i∗ sends the generating trivial cofibrations for the stable projective model

structure on USptG to the generating trivial cofibrations of the stable projective model structure on Spt and that
every generating trivial cofibration in this model structure on Spt may be obtained by applying the functor i∗ to
a generating trivial cofibration in the above model structure on USptG.

Finally, we now observe from [HSS, Lemma 4.1.7], that it suffices to prove that for any object X ∈ Spt

(Y ∈ ŨSpt
G

), which is cofibrant in the projective stable model structure there, the composite map X → i∗P(X )→
i∗Q(P(X )) (Y → j∗P̃(Y)→ j∗Q(P̃(Y)) is a stable weak-equivalence. In view of (3.3.12), we obtain the identification

i∗Q(P(X )) = Q(i∗(P(X ))) (j∗Q(P̃(Y)) = Q(j∗(P̃(Y))), respectively). Clearly the map i∗P(X ) → Q(i∗(P(X )))

(j∗P̃(Y)→ Q(j∗P̃(Y))) is a stable weak-equivalence, since Q(i∗(P(X ))) (Q(j∗(P̃(Y))) is a stably fibrant replacement

of i∗(P(X )) (j∗(P̃(Y)), respectively). Therefore, it suffices to show that the natural map X → i∗(P(X )) (Y →
j∗(P̃(Y)), respectively) is a stable weak-equivalence for every cofibrant object X ∈ Spt (Y ∈ ŨSpt

G

, respectively).
A closely analogous statement is proven in [HSS, Lemma 4.3.11]. Observe that the generating cofibrations are
given as in (3.3.3), which are suspension spectra for which the required statement is true by (3.3.10) and (3.3.11).
Therefore, one may prove this readily from the construction of a cofibrant replacement using these generating
cofibrations and the small object argument as in [Hov01, Theorem 2.1.14]. We skip the remaining details. These

complete the proof of the first two statements. Observe that both the functors P and P̃ are left-Kan extensions
and therefore, commute with the smash-products of spectra, which are also left-Kan extensions. This completes
the proof of the proposition. �

Terminology 3.12. Given a commutative ring spectrum EG ∈ SptG, we let E = i∗(P̃Ũ(EG), which is a commu-

tative ring spectrum in Spt. For example, the equivariant sphere spectrum SG provides S = i∗(P̃Ũ(SG)) the usual
sphere spectrum.

Remark 3.13. Then one readily proves the existence of a Quillen equivalence between the model categories USptG
EG

and SptE , just as in Proposition 3.11.
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Proposition 3.14. Let X ∈ SptG and let Ũ(X ) ∈ ŨSpt
G

denote the forgetful functor Ũ (as in (3.2.8)) applied to

X . If X ′′ → Ũ(X ) (Ũ(X )→ X ′) is a functorial cofibrant (fibrant) replacement in the injective or projective stable

model structure on ŨSpt
G

, then both X ′ and X ′′ belong to SptG. Moreover, the natural maps X ′′ → Ũ(X ) and

Ũ(X )→ X̃ ′′ both belong to SptG.

Proof. Recall that the linear algebraic group G acts on a simplicial presheaf section-wise. Therefore, the functori-
ality of the cofibrant and fibrant replacements show readily, as in the proof of Proposition 3.1, that the cofibrant
and fibrant replacements then inherit G-actions making them belong to SptG. �

3.3.13. Derived functors of ∧, the internal Hom and the dual D for equivariant spectra. Recall that

the functor Ũ : SptG → ŨSpt
G

is a strict monoidal functor. Let M,N ∈ SptG. The fact that one may find

functorial cofibrant and fibrant replacements of objects in ŨSpt
G

shows that one may find a functorial cofibrant

replacement M′′ → Ũ(M) in ŨSpt
G

and a functorial fibrant replacement Ũ(N)→ N′ in ŨSpt
G

. The functoriality
of the cofibrant and fibrant replacements, shows as in Proposition 3.14 that in fact M′′, N′ and the maps M′′ → M,
N→ N′ all belong to SptG. Therefore, it is possible to define

(3.3.14) M
L
∧N = Ũ(M′′) ∧ Ũ(N), RHom(M,N) = Hom(Ũ(M′′), Ũ(N′)), D(M) = RHom(Ũ(M), Ũ(SG))

with M
L
∧N,RHom(M,N),D(M) ∈ SptG. (In fact, since we choose to work with the injective model structures,

every object is cofibrant and therefore there is no need for any cofibrant replacements.) Similar conclusions will

hold when EG ∈ SptG is a commutative ring spectrum with the corresponding smash product ∧EG and HomEG

defined in (3.2.6). (In this case the dual with respect to the ring spectrum E will denoted DE .)

We let S̄ = S ×
Spec k

Spec k̄, where k̄ denotes an algebraic closure of k. For a given topology ? = Nis, et, we will

let ŨSpt/SG
? (ŨSpt/S̄G

? ) denote the corresponding category of spectra on the site ?. Then we have the following
maps of sites: ε : Sm/Set → Sm/SNis, ε̄ : Sm/S̄et → Sm/S̄Nis and η : Sm/S̄et → Sm/Set.

These induce the following maps of topoi:

(3.3.15) ε∗ : ŨSpt
G

/SNis → ŨSpt
G

/Set, ε̄
∗ : ŨSpt

G

/S̄Nis → ŨSpt
G

/S̄et and η∗ : ŨSpt
G

/Set → ŨSpt
G

/S̄et.

Definition 3.15. We will let ŨSpt
G

mot denote ŨSpt
G

/SNis. (As observed earlier, when S = Spec k, and the group
G is trivial, the corresponding homotopy category is often denoted SH(k) in the literature.) If EG a commutative

ring spectrum in ŨSpt
G

mot, then ŨSpt
G

mot,EG will denote the subcategory of ŨSpt
G

mot consisting of module spectra

over EG and where the monoidal structure is given by ∧EG . ŨSpt
G

et and ŨSpt
G

et,EG will denote the corresponding
categories of spectra defined on the étale site of the base scheme S.

We summarize the main properties of the category ŨSpt
G

/S in the following proposition, which should follow
readily from Proposition 3.2. Therefore, we skip its proof.

Proposition 3.16. (i) ŨSpt
G

/S with the above smash product ∧S is a closed symmetric monoidal model category.

(ii) SG is the unit of the monoidal structure ∧ in ŨSpt
G

/S. (iii) The maps ε∗, ε̄∗ and η∗ are compatible with the
monoidal structures on the above topoi. For EG as above, the corresponding results also hold for the category

ŨSpt/SG
EG .

We conclude this section with the following result, which may be easily proven using the following observations.
First one needs to observe that the topological space P1

C identifies with the topological space S2. Over an alge-
braically closed field k̄ of positive characteristic p, one uses P1

W (k̄)
(which is the P1 defined over the ring of Witt

vectors of k̄) to compare P1
k̄

with P1
C.

Proposition 3.17. Let the base scheme S = Spec k for a field k with char(k) = p ≥ 0. Let ` denote a prime

different from p and let M denote a spectrum in Sptmot so that all the homotopy groups [S1∧s∧Tt∧ΣTX+,M] (as
X varies in the site) are `-primary torsion. We will further assume that k has finite `-cohomological dimension.

(Here [S1∧s ∧Tt ∧ ΣTX+,M] denotes Hom in the stable homotopy category HSptmot.)

Then η∗ε∗(M) is an S2-spectrum (i.e. the structure maps defined by smashing with S2) in Sptet whose homotopy
groups are also `-primary torsion. In particular, if M = H(Z/`n) is the motivic Eilenberg-Maclane spectrum, then



24 Gunnar Carlsson and Roy Joshua

η∗ε∗(M) = H(Z/`n)et, which is the corresponding Eilenberg-Maclane spectrum on the étale site with the structure
maps defined by smashing with S2.

Remark 3.18. The difference between using S2 for suspensions instead of the usual S1 is insignificant for objects of
Sptet, since for a given spectrum M = {Mn|n ≥ 0}, {M2n|n ≥ 0} is co-final in {Mn|n ≥ 0}.

4. Cellular objects in Sptmot and Sptet, as well as suspension spectra of linear schemes and mixed
Tate motives

The notion of cellular objects in the motivic homotopy category has been discussed in [DI05]. On the other
hand there is also the notion of linear varieties considered in an early paper of Totaro (see [Tot99]) and also by
the second author in [J01]. Finally the category of schemes that are mixed Tate is well-known. Since the most
basic dualizable objects are the finite cellular objects, and as this notion seems to vary depending on the framework
(see, for example, the Remark 4.4 below), it seems important to begin with a brief discussion comparing the above
notions, which we will do presently. We will assume throughout this section that the (base) scheme B = S is a
fixed perfect field k: this is mainly for simplicity. Let S = Spec k. Let ε : Sm/Set → Sm/SNis denote the obvious
map of sites and let ε∗ denote the induced map Spt/SNis → Spt/Set of topoi. We will, in fact, let ε∗ denote the
corresponding left derived functor Lε∗, which is defined as the composition of a functorial cofibrant replacement
functor followed by the functor ε∗.

Definition 4.1. Let (Motivic Cells) = {ΣTS1∧s ∧ (Gm)∧
t |s, t ≥ 0}. Then the class of motivic cellular-objects in

Sptmot is the smallest class of objects in Sptmot so that (i) it contains (Motivic Cells) (ii) if X is weakly-equivalent
in Sptmot to a motivic cellular object, then X is a motivic cellular object and (iii) if {Xi|i ∈ I} is a collection of
motivic cellular objects indexed by a small category I, then hocolim

I
Xi is also motivically cellular.

One defines (Étale Cells) similarly by replacing the objects in (Motivic Cells) by the objects in Sptet obtained

by applying Lε∗ to them. One defines the class of étale cellular objects similarly using Étale Cells in the place of
Motivic Cells. The class of Mixed Tate motives is defined similar to motivic cellular objects, but using T in the
place of Gm. We will often use the notation (Cells) to denote either (Motivic Cells) or (Étale Cells).

If E is a commutative ring spectrum in Sptmot (Sptet) one defines E−Cells to be {{E∧ΣTS1∧s∧(Gm)∧
t |s, t ≥ 0}.

Then one defines the class of E-cellular objects and E-Mixed Tate motives in Sptmot,E (Sptet,E) in a similar manner.

In the above situation, the full subcategory of finite cellular objects or equivalently finite T-spectra is the smallest
class of objects in Sptmot (Sptet) containing (Cells) with the following properties: (i) it is closed under finite sums
(ii) if X is weakly-equivalent to a finite cellular object, then X is a finite cellular object and (iii) it is closed under
finite homotopy pushouts.

If p ≥ q ≥ 0, then we let Sp,q = (S1)∧
p−q ∧ (Gm)∧

q

. Given any pair of integers a, b ∈ Z, one may choose
p = a+ 2t, q = b+ t, with t a non-negative integer so that 2t ≥ −a, t ≥ −b and a+ t ≥ b (i.e t ≥ b− a).

Definition 4.2. If p ≥ q ≥ 0, then we let ΣpqT = ΣTSp,q. If a, b ∈ Z are any pair of integers and t, p, q are chosen

as above we let Σa,bT = Σ−tT Sp,q.

Proposition 4.3. (i) Any spectrum of the form Σa,bT , a, b ∈ Z may be obtained by T-suspensions and de-suspensions
of objects in Motivic Cells.

(ii) The full triangulated subcategory of HSpt/S generated by the Mixed Tate objects and closed under infinite
co-products identifies with the triangulated full subcategory generated by the Motivic Cellular objects.

Proof. (i) is clear. (ii) follows since T identifies with S1 ∧Gm in HSpt. �

One may readily verify the following properties of cellular objects: (i) If X ,Y ∈ Sptmot (Sptet) are cellular, then
so is X ∧Y and X ×Y, (ii) If {Xi|i ∈ I} is a family with each Xi cellular, then so is

∨
i Xi, which is the co-product

of the Xi and (iii) The suspension-spectra Σs+2n,n
T (Am

k̄
)+, Σs+2n,n

T (Am
k̄
− 0)+ are cellular. One may consult [DI05,

sections 3 and 4] for some of the remaining properties of cellular objects.

Remark 4.4. The following needs to be pointed out. In general, principal G-bundles for linear algebraic groups
are locally trivial only in the étale topology. Special cases where such principal bundles are trivial in the Zariski
topology (and hence the Nisnevich topology) are when the group is special, for example, is a GLn. Finite groups
are known to be not special. When a G-principal bundle p : E → B is locally trivial for the Zariski or Nisnevich
topology, one may prove readily that if E is cellular, then so is B. (See [DI05, Proposition 4.3].) The proof is
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straightforward, but applies largely to the case where G is special. When the principal bundle is only locally trivial
for the étale topology, as most often happens, one needs to use the observation that p is smooth and surjective, so
that there is an étale cover B′ → B so that p trivializes on the étale cover B′. This observation applies to principal
bundles for most groups G, including finite groups.

On the other hand, the linear schemes considered in [Tot99] and [J01] are schemes that are built out of affine
spaces and tori and are particularly simple objects to study in the setting of algebraic geometry: see [J01]. Though
it is not immediately apparent, these two notions are closely related as shown below in Proposition 4.7.

Definition 4.5. (Linear and special linear schemes) A scheme X over k is linear if it has a finite filtration
F0 ⊆ F1 ⊆ · · ·Fn−1 ⊆ Fn = X by closed sub-schemes so that there exists a sequence m0,m1, . . . ,mn, a0, a1, . . . , an
of non-negative integers with each Fi − Fi−1 = tAai

k × Gmi

m,k which is a finite disjoint union of products of affine

spaces and split tori isomorphic to Aaik × Gmim,k. Moreover, we require that each of the above summands is a

connected component of Fi − Fi−1. We call {Fi|i} a linear filtration.

A linear scheme where the strata Fi − Fi−1 are all isomorphic to disjoint unions of affine spaces will be called a
a special linear scheme.

Remark 4.6. Often special linear schemes are called cellular schemes in the literature. We prefer to use the term
special linear schemes so as not to conflict with the notion of a cellular object in Sptmot and Sptet.

Proposition 4.7. The T - suspension spectrum of any smooth linear scheme (of finite type over k) is a finite
cellular object in Sptmot and in Sptet.

Proof. Let φ = F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ Fn−1 ⊆ Fn = X denote the given filtration so that each Fi − Fi−1 =
tAmi × Gni

m , which is a finite sum of products of affine spaces and split tori. The proof is to show by descending
induction on i that the suspension spectra ΣT(X− Fi) are all finite cellular. We skip the remaining details. �

5. Further Examples of Dualizable objects and Proof of Theorem 1.3

This section will be devoted to a rather detailed discussion of many examples of dualizable objects in the motivic
and étale stable homotopy category. As Theorem 1.3 shows, knowing precisely which objects are dualizable in
which context and that the functors of étale realization and base-change to separably closed base fields preserve
dualizability is of key importance for the paper. It perhaps needs to be pointed out that [DP84, 2.2 Theorem
and 2.4 Corollary] seem to provide a quick proof that the realization functors ought to preserve the notion of
Spanier-Whitehead duality, while ignoring various subtleties that show up, such as in Lemma 5.3, Proposition 5.6
or Theorem 5.7. Therefore, we believe it is both necessary and worthwhile to carefully re-examine the proof that
an object is dualizable, culminating in the proof of Proposition 5.9 and Theorem 1.3.

We will continue to work in the framework of the stable categories Sptmot and Sptet. As in the last section,
we will continue to assume that the base scheme B = S = Spec k is a perfect field. In the étale framework,
we will further assume that k satisfies the finiteness hypotheses in (3.0.3) and that if E denotes a commutative
ring spectrum in Sptet it is either `-complete or has homotopy groups that are `-primary torsion for some prime
` 6= char(k). Throughout this section, ∧, Hom and for commutative ring spectra E , ∧E and HomE will denote
their corresponding derived versions. We begin with the following result.

Proposition 5.1. (i) If E is a commutative ring spectrum in Sptmot and M is a finite E-cell module spectrum,
then M is dualizable in Sptmot,E .

(ii) If M is an E-module spectrum that is dualizable, so is any retract of M.

(iii) Assume the base field k satisfies the finiteness hypotheses in (3.0.3). If E is a commutative ring spectrum in
Sptet which is `-complete for some prime ` 6= char(k), the corresponding results hold for any finite E-cell module.

Proof. We begin with the following observation: in order to prove that an M ∈ Sptmot,E (M ∈ Sptet,E) is dualizable,
making use of Corollary 2.4, it suffices to prove that the natural maps

(a) F ∧E HomE(M,E)→ HomE(M,F), (b) M→ DE(DE(M)), F ∈ Sptmot,E (F ∈ Sptet,E , respectively)

are weak-equivalences for all F as above. We first consider (i). When M = Σt
TE , the weak-equivalence in (a)

is clear. It is also clear when M = Ss ∧ Σt
TE , since then the left-hand-side of (a) identifies with F ∧E Ωs

S1Σ−t
T E

and the right-hand-side identifies with ΩsS1Σ−tT F. The spectral sequence computing the derived smash product on
the left-hand-side of (a) will degenerate then showing that the map in (a) is indeed a weak-equivalence. Now the
weak-equivalence in (a) follows by induction on the number of E-cells in M. (b) may be proven similarly. It is clear
that these arguments work in both Sptmot and Sptet.
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We will skip the proof of (ii) as it follows from routine arguments. As observed above, the proofs of (i) and (ii)
extend to the étale case thereby proving (iii). Nevertheless we provide here a few comments clarifying the proofs
in the étale case. It is important here that we invert A1 in Sptet. Having inverted A1, one may readily prove as
in Theorem 10.15 that if X is a smooth scheme over a perfect field k satisfying the hypothesis in (3.0.3) that has
a finite stratification by strata that are affine spaces over k, then E ∧X+ is dualizable in Sptet,E . To complete the
proof for all finite cell spectra over E , all one needs to show is that E ∧ Gm,+ is also dualizable in Sptet,E . This

follows now from the fact that E ∧ A1
+ is dualizable in Sptet,E and the observation that A1 −Gm = {0}. �

Lemma 5.2. Let E denote a commutative ring spectrum in Sptmot (in Sptet) and let Sptmot,E (Sptet,E) denote
the subcategory of E-module spectra.

(i) Let E ′ denote a commutative ring spectrum in Sptmot (Sptet) provided with a map of ring spectra E → E ′.
If M ∈ Sptmot,E (M ∈ Sptet,E) is dualizable, then M ∧E E ′ is dualizable in Sptmot,E′ (Sptet,E′ , respectively).

(ii) For a fixed prime ` and ν > 0, let E(`ν) denote the homotopy cofiber of the map E `
ν

→E. If M ∈ Sptmot,E
(Sptet,E) is dualizable, then so is M ∧E E(`ν).

Proof. We skip the proofs, since both statements may be proved readily. �

The following result shows how the hypothesis (3.0.3) ensures compactness in the étale setting.

Lemma 5.3. Let k denote a field of finite `-cohomological dimension for some prime ` 6= char(k). If X is any
scheme of finite type over k and E is a spectrum in Sptet which is `-complete, then E ∧X+ is a compact object in
HSptet,E .

Proof. Let RHomE denote the external hom in HSptet,E. Then it suffices to prove that if {Eα|α} denotes a small
filtered direct system of spectra in Sptet,E, then one obtains an isomorphism:

lim
→ α

RHomE(E ∧X+,Eα) ∼= RHomE(E ∧X+, lim→ α
Eα).

This readily reduces to showing that one has a weak-equivalence of spectra

lim
→ α

H(X,Eα) ' H(X, lim
→ α

Eα).

Here H(X,F) denotes the hypercohomology spectrum defined as the homotopy inverse limit of the cosimplicial
spectrum {Γ(X,GnF)|n} where {GnF|n} denotes the canonical Godement resolution. This follows readily from the
assumption that k has finite étale `-cohomological dimension and that E is a spectrum which is `-complete. Since
Eα are module spectra over E , it follows that the homotopy presheaves of the spectra Eα are also `-complete, i.e.
are modules over Z ̂̀ . Therefore, the spectral sequences that compute the generalized cohomology,

Es,t
2 = Hs

et(X, π−t(Eα))⇒ π−s−tH(X, Eα)

converge strongly for each α, and so does the colimit spectral sequence with respect to the spectrum lim
→ α

Eα. To

see this, observe that since the homotopy sheaves π−t(Eα) are modules over Z ̂̀ , the only torsion in the E2-terms
are `-primary torsion. But X has finite `-cohomological dimension, in view of the assumptions, so that there exists
an integer N > 0 (independent of α) for which Es,t

2 = 0 for all s > N .

Finally, since X is a Noetherian scheme, étale cohomology of the scheme X commutes with respect to filtered
colimits of abelian sheaves. �

Proposition 5.4. (i) The T-suspension spectrum of any projective smooth scheme over any affine base scheme S
is dualizable in Sptmot. In fact if X is such scheme over the affine base scheme S, there exists a vector bundle ν
on X so that the T-suspension spectrum of the Thom-space of ν is the dual of ΣmTX+ for some positive integer m.
Any vector bundle or affine space bundle over such a projective smooth scheme is also dualizable.

(ii) If X is a smooth quasi-projective variety over a field of arbitrary characteristic which admits an open im-
mersion into a smooth projective variety so that the complement is a divisor with strict normal crossings, then the
T-suspension spectrum of X is dualizable in Sptmot.

(iii) If the base scheme S is the spectrum of a field of characteristic 0, then the T-suspension spectrum of any
quasi-projective variety over S is dualizable in Sptmot .

(iv) Let E denote a commutative ring spectrum in Sptmot. If X denotes any of the schemes appearing in (i)
through (iii), then E ∧X+ is dualizable in Sptmot,E . In particular this applies to E = ΣT[p−1], where p > 0 is the

characteristic of the base field, ΣT,(`) and Σ̂T,`, where ΣT,(`) (Σ̂T,`) denotes the localization of ΣT at the prime
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ideal (`) in Z (the `-completion of ΣT as discussed, for example in [CJ14, section 4], respectively). Here ` is a
prime different from the characteristic of the base field.

(v) Assume the base scheme S is a perfect field satisfying the hypothesis (3.0.3). Let E ∈ Sptmot denote a
commutative ring spectrum whose homotopy groups are `-primary torsion, for some prime ` 6= char(k) and let X
denote any of the schemes appearing in (i) through (iii). If ε : Sptmot → Sptet denotes the functor induced by
pull-back to the étale site, then ε∗(ΣTE ∧X+) ' ε∗(E) ∧ε∗(ΣT) ε

∗(ΣTX+) is dualizable in Sptet,ε∗(E).

Proof. The first statement is now well-known in the motivic case and is deduced from Atiyah style duality. This
seems to appear originally in [Hu-Kr05], [Ri05], [Ay]. A key idea of the proof is to first prove this for all projective
spaces by using ascending induction on their dimension, the case when it is of dimension 0 being that of Spec k and
then deduce this for all smooth closed projective subvarieties. We have re-worked this to clarify the proof and also
to show that it extends to the étale case as well. This is discussed in the appendix. The construction of the motivic
Spanier-Whitehead dual in terms of the Thom-spaces as in Theorem 10.14 shows that there exists an algebraic
vector bundle νX over X and a non-negative integer m so that one obtains the co-evaluation and evaluation maps

(5.0.16) cX : ΣT → ΣTX+ ∧ Σ−m
T Th(νX), eX : Σ−m

T Th(νX) ∧ ΣTX+ → ΣT

satisfying the hypothesis in Theorem 2.3(ii) with D′X replaced by Σ−mT Th(νX) and X = ΣTX+. These complete
the proof of the first statement. One may also want to observe that a corresponding statement, for the étale case,
when the base field is algebraically closed was worked out in detail in the second author’s Ph. D thesis and appears
in [J86] and [J87], making use of a theory of étale tubular neighborhoods.

The second statement then follows from the first by ascending induction on the number of irreducible components
of the normal crossings divisor that is the complement, and the following argument. Assume X is provided with an
open immersion into a smooth projective variety X̃ with complement Y which is also smooth. Then, if the normal
bundle associated to the closed immersion Y → X̃ is N, the homotopy purity theorem (see [MV99, Theorem 3.2.33])
provides the stable cofiber sequence:

X→ X̃→ X̃/X ' P(N⊕ 1)/P(N).

Since P(N⊕1) and P(N) are projective and smooth, they are dualizable and hence so is X̃/X. Since X̃ is projective
and smooth, it is dualizable and therefore, by Proposition 2.5, it follows that X is also dualizable.

The same argument as in (ii) now applies to prove (iii), since by invoking strong resolution of singularities one

may provide X with an open immersion into a projective smooth variety X̃ so that the complement of X is a
divisor with strict normal crossings. Lemma 5.2(i) with E there denoting the motivic sphere spectrum ΣT and E ′
denoting the given commutative ring spectrum E in (iv) then proves the statement in (iv). Observe that, when X
is a projective smooth variety, taking the smash product of the co-evaluation and evaluation maps in (5.0.16) with
the commutative ring spectrum E provides the required co-evaluation and evaluation maps for E ∧X+.

Clearly it suffices to prove (v) for projective smooth schemes X over k, since the same arguments as above apply
to extend this to the other cases. On taking the smash product with the motivic ring spectrum E and applying ε∗

to the co-evaluation and evaluation maps in (5.0.16), one obtains the required co-evaluation and evaluation maps
for ε∗(E ∧ X+) ' ε∗(E) ∧ε∗(ΣT) ε

∗(ΣTX+) which clearly satisfy the hypothesis in Theorem 2.3(ii). As remarked
before, étale cohomology is well-behaved only with respect to torsion coefficients away from the characteristics.
This is the need to smash with a commutative ring spectrum E as in (v). �

The following are examples where the Propositions 5.1 and 5.4 apply.

Examples 5.5. 1. Any flag variety, G/P for a reductive group G and a parabolic subgroup P is a projective smooth
variety. This includes as special cases all projective spaces. One may also consider projective space bundles and
vector bundles over such flag varieties. (For example, one may consider varieties of the form G/T, where G is a
linear algebraic group and T is a maximal torus.) These all satisfy the hypotheses in Proposition 5.4(i).

2. Any split torus T satisfies the hypothesis in Proposition 5.4(ii). If the rank of the split torus T is n, one may
imbed T into a product (P1)n, where each factor Gm is imbedded in the obvious manner in the corresponding factor
P1.

3. Let G denote a reductive group and H denote a closed subgroup obtained as the fixed points of an involution,
both defined over a field k of characteristic different from 2. Then the homogeneous variety G/H admits a wonderful
compactification where the complement of G/H is a divisor with strict normal crossings. (See [DeC-Sp99] for a
proof.) This includes a variety of examples: for example, one may take for the group G, G×G and the involution
σ the automorphism that interchanges the two factors so that H is the diagonal copy of G. Another example would
be G = GLn with H = On or G = SL2n and H = Sp2n.
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4. Over a field of characteristic 0, one may consider any homogeneous variety G/H for any linear algebraic group
G and a closed subgroup H. Clearly such a variety is a smooth quasi-projective variety and therefore satisfies the
hypotheses in Proposition 5.4(iii). Clearly this includes varieties of the form G/N(T) where G is a linear algebraic
group and N(T) denotes the normalizer of a maximal torus in G.

Proposition 5.6. Assume the base field k satisfies the hypothesis (3.0.3). Let E denote a commutative ring
spectrum in Sptet which is `-complete, for some prime ` 6= char(k). Let G denote a split linear algebraic group
over k and let H denote a closed linear algebraic subgroup which is also split. Then E ∧ G/H+ is dualizable in
Sptet,E .

Proof. The Bruhat decomposition shows that both G and H are linear schemes. Therefore, Proposition 4.7 shows
that ΣT(G)+ and ΣT(H)+ are finite cellular objects. Now Remark 4.4 with E, G and B there denoting G, H and
G/H, respectively shows that G→ G/H is locally trivial in the étale topology and therefore, E ∧G/H+ is cellular
in Sptet,E . On the other hand, G/H is clearly a smooth scheme defined over k (see: [Spr98, 12.2.1]) and since k has
finite ` cohomological dimension, G/H+∧E is a compact object in Sptet,E : see Lemma 5.3 above. Therefore, [DI05,
Proposition 9.4] applies to prove that E ∧G/H+ is a retract of a finite cellular object in Sptet,E . (Though [DI05,
Proposition 9.4] is stated in the motivic context, its proof shows that the result applies also to the étale framework
since the full subcategory of Sptet,E consisting of cellular objects is generated by the E-cells. Any compact object
in the above full subcategory of Sptet,E is a retract of a finite cellular object.) Now Proposition 5.1(ii) shows it is
dualizable in Sptet,E . �

Making strong use of Gabber’s refined alterations we proceed to sketch a vast generalization of the second
statement in Proposition 5.4 above for quasi-projective schemes over perfect fields with respect to ring spectra E
that are Z(`)-local as in Definition 1.2. Though the arguments we provide below is now rather well-known (see, for
example, [K13] or [HKO, 2.5]), it is necessary for us to sketch the relevant arguments in some detail, so as to show
that they indeed carry through under étale realization and change of base fields.

Assume the base scheme is a perfect field of characteristic p ≥ 0.

Theorem 5.7. Let k denote a perfect field of characteristic p ≥ 0 and let X denote a smooth quasi-projective
scheme over k. Let ` denote a fixed prime different from char(k) and let E denote a commutative motivic ring
spectrum which is Z(`)-local. Then E ∧X+ is dualizable in the category Sptmot,E of module spectra over E with the
same conclusion holding with no conditions on the spectrum E if X is projective and smooth. In particular, this

holds for ring spectra E of the form K
L
∧

ΣT

H(Z/`ν), where K is a commutative motivic ring spectrum, ` is a prime

different from p and ν ≥ 1. Here H(Z/`ν) denotes the usual Z/`ν- motivic Eilenberg-Maclane spectrum, and
L
∧

ΣT
is

the derived smash product.

Proof. We will give two somewhat different proofs of this result, one of which holds only when E admits weak traces
in the sense of [K13] and the other holds more generally making use of [Ri13]. First observe from Corollary 2.4,
that the statement we want to prove is that the natural maps

(5.0.17) ηX
E : P

L
∧EHomE(E ∧X+, E)→ HomE(E ∧X+,P), E ∧X+ → DE(DE(E ∧X+))

are weak-equivalences for every E-module spectrum P.

In case X is projective and smooth, the results of the appendix (see Theorem 10.14) show that the Thom-
space of a virtual normal bundle over X de-suspended a finite number of times is a (Spanier-Whitehead) dual of
ΣTX+. Therefore, the above Thom-space de-suspended a finite number of times and smashed with E will be a
(Spanier-Whitehead) dual of E ∧X+ in the category of E-module spectra.

Let SH(k, E) denote the motivic stable homotopy category of E-module spectra, i.e. the homotopy category
associated to Sptmot,E . Let SHd(k, E) denote the localizing subcategory of SH(k, E) which is generated by the
shifted E-suspension spectra of smooth connected schemes of dimension ≤ d. In general one proceeds by ascending
induction on the dimension of X to prove that the maps in (5.0.17) are weak-equivalences, the case of dimension
0 reducing to the case X is projective and smooth. When X is quasi-projective of dimension d, one may assume
j : X → Y is an open immersion in a projective scheme Y and let f : Y′ → Y denote the map given by Gabber’s
refined alteration so that X′ = f−1(X) is the complement of a divisor with strict normal crossings. Let U ⊆ X
denote the open subscheme over which f restricts to an fps`′-cover g : V = f−1(U)→ U.

Since Y′ is smooth and projective, E ∧ Y′+ is dualizable in the category of E-module spectra. By homotopy-
purity, induction on the number of irreducible components of Y′ − X′ and Proposition 2.5, (see also the proof of
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Proposition 5.4(ii)) one observes that E ∧X′+ is also dualizable in the same category. Now one considers the stable
cofiber sequences:

(5.0.18) E ∧V+ → E ∧X′+ → E ∧X′/V, E ∧U+ → E ∧X+ → E ∧X/U.

By an argument as in [RO08, Lemma 66] (see also [HKO, 2.5]), both E ∧X′/V and E ∧X/U belong to SHd−1(k, E).
We will provide some details on this argument, for the convenience of the reader. In case the complement Z = X′−V
is also smooth, the homotopy purity Theorem [MV99, Theorem 3.2.33] shows that X′/V is weakly equivalent to
the Thom-space of the normal bundle N associated to the closed immersion Z → X′. Now ascending induction
on the number of open sets in a Zariski open covering over which the normal bundle N trivializes will reduce it
the case when N is trivial. In this case the conclusion is clear. In general, since the base field is assumed to be
perfect, one can stratify Z by a finite number of locally closed subschemes that are smooth. This will give rise to a
sequence of motivic spaces filtering X′/V, so that the homotopy cofiber of two successive terms will be of the form
considered earlier. An entirely similar argument applies to X/U.

Therefore, by the induction hypotheses, both the maps η
X′/V
E and η

X/U
E are weak-equivalences. It follows

therefore, by Proposition 2.5, that the map ηEV is also a weak-equivalence. Now we make the key observation
proven below that E ∧U+ is a retract of E ∧V+ at least when U is a sufficiently small Zariski open subscheme and
that, therefore, the map ηEU is also a weak-equivalence. Now the second stable cofiber sequence in (5.0.18) together
with another application of Proposition 2.5 proves that the map ηEX is also a weak-equivalence. One may prove the
second map in (5.0.17) is a weak-equivalence by a similar argument.

It follows straight from the definition that the spectra K
L
∧

ΣT

H(Z/`ν) and H(Z/`ν) are Z(`)-local. (Observe also

that H(Z/`ν) admits weak-traces and that K
L
∧

ΣT

H(Z/`ν) admits weak traces when K admits weak-traces.) �

Lemma 5.8. (i) Let V, U denote two smooth schemes over k and let g : V → U denote an fps`′-cover, where `
is a fixed prime different from char(k). If E is a commutative ring spectrum which is Z(`)-local and which admits
weak traces as in [K13], then the map idE ∧ g+ : E ∧V+ → E ∧U+ has a section.

(ii) More generally the same conclusion holds if U is a sufficiently small Zariski open subscheme and for any
commutative motivic ring spectrum E that is Z(`)-local.

Proof. (i) The first observation is that it suffices to show the induced natural transformation:

[E ∧U+, ]
g∗→[E ∧V+, ]

has a splitting, where [K,L] denotes homotopy classes of maps in Sptmot,E , with K cofibrant and L fibrant.
Denoting the structure map U → Spec k by a, one may identify [E ∧ U+,F] ([E ∧ V+,F]) with [E ,Ra∗a

∗(F)]
([E ,Ra∗Rg∗g

∗a∗(F)], respectively) for any fibrant E-module spectrum F. Since E has a structure of traces, so does
F. Therefore, the natural map Ra∗a

∗(F) → Ra∗Rg∗g
∗a∗(F) has a splitting provided by the map d−1Tr(g), where

d is the degree of the map g and Tr(g) denotes the trace associated to g.

(ii) The proof of (ii) is essentially worked out in [Ri13]. �

We proceed to show that the notion of dualizability is preserved by various standard operations, like change
of base fields, or change of sites. Recall that we have already assumed the base scheme S = B is a perfect field
k satisfying the hypothesis (3.0.3). We will let k̄ denote its algebraic closure. Recall from (3.3.15), the following
maps of topoi:

(5.0.19) ε∗ : Spt/Smot → Spt/Set, ε̄
∗ : Spt/S̄mot → Spt/S̄et and η∗ : Spt/Set → Spt/S̄et.

Since étale cohomology is well-behaved only with torsion coefficients prime to the characteristic, one will need

to also consider the functors θ : Spt/Set → Spt/Set sending commutative ring spectra E to E
L
∧

Σε∗(T)

H(Z/`) where

H(Z/`) denotes the mod-` Eilenberg-Maclane spectrum in Sptet,ε∗(T). If ` is a fixed prime different from char(k),
and E is a commutative ring spectrum in Sptet,E , we will also consider the functor sending spectra M ∈ Sptet,E to
M ∧E E(`ν): we will denote this functor by φE . We will adopt the convention that the above maps of topoi in fact
denote their corresponding left derived functors.

Proposition 5.9. Let ` denote a fixed prime different from char(k), where k is assumed to be a perfect field
satisfying the hypothesis (3.0.3). If E is a commutative motivic ring spectrum so that it is `-primary torsion as
in Definition 1.2, then the functors ε∗, ε̄∗, η∗ send the dualizable objects of the form E ∧ X+ appearing in in
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Propositions 5.1(i) and (ii), 5.4(iv), and Theorem 5.7 to dualizable objects. The same conclusion holds for the
functors θ and φE if E is a motivic ring spectrum that is `-complete. If the ring spectrum E is `-complete, the
functor η∗ sends the dualizable objects E ∧X+ appearing in Proposition 5.6 to dualizable objects.

Proof. The first observation is that Proposition 5.4(v) already shows the functors ε∗ (ε̄∗) send the dualizable objects
in Spt/Smot (Spt/S̄mot) considered in Proposition 5.4(iv) to dualizable objects in Spt/Set (Spt/S̄et, respectively).
That the functors ε∗, ε̄∗ and η∗ preserve dualizable objects is clear for the finite cellular objects considered in
Proposition 5.1. One may make use of the fact that the base field is perfect to see that base-change to the algebraic
closure of the base field sends projective smooth schemes to projective smooth schemes and preserves strict normal
crossings divisors. Therefore, the functor η∗ sends the schemes appearing in Proposition 5.4(v) to dualizable
objects.

Observe that the functor ε∗ sends motivic spectra which are `-primary torsion for a fixed prime different from
char(k) to étale spectra which are `-primary torsion and preserves all split maps. It also sends (motivic) spectra
with traces to spectra with traces. Therefore, the same argument making use of the stable cofiber sequences
in (5.0.18) carries over to prove that ε∗ and ε̄∗ send dualizable objects in Theorem 5.7 to dualizable objects,
when the spectrum E is `-primary torsion. One may prove similarly that the functor η∗ sends dualizable objects
appearing in Theorem 5.7 to dualizable objects. The conclusion that the functors θ and φE send dualizable objects
to dualizable objects follows from Lemma 5.2.

Observe that the base field appearing in Proposition 5.6 is allowed to be arbitrary subject to the hypothe-
sis (3.0.3). It is clear that η∗(G/H) = Ḡ/H̄ which also satisfies the hypotheses of Proposition 5.6 over the base field
k̄. Therefore, the last conclusion follows. �

Proof of Theorem 1.3. The first (second) statement is proven in Theorem 5.7 (Proposition 5.6, respectively).
The third statement is proven in Proposition 5.9. �

6. Construction of the Transfer for torsors for linear algebraic groups in Motivic and Étale
Cohomology

In this section, we proceed to build on the general transfer map defined in Definition 2.8 to obtain transfer maps
for torsors for linear algebraic groups, i.e. when p : E → B is a smooth map of smooth quasi-projective schemes
that is a G-torsor for a linear algebraic group G. By taking B = BGgm,m which is the m-th degree approximation
to the classifying space of the group G (its principal G-bundle, respectively) as in [Tot99], [MV99] or [CJ19] and
pm : E = EGgm,m → B = BGgm,m denoting the corresponding G-torsor, we obtain a transfer for Borel-style
generalized equivariant motivic and étale cohomology. In the latter case, one has to deal separately with the issue
of obtaining a transfer for the map lim

m→∞
pm from the transfers for each of the maps pm.

For the convenience of the reader, we will quickly review some of the basic framework, discussed earlier. Let
k denote a fixed perfect field, S = Spec k and let SmS denote the category of all smooth quasi-projective schemes
of finite type over S. Let G denote a linear algebraic group defined over S, viewed as a presheaf of groups on the
same category. We let SptG

mot (SptG
et, respectively) denote the category of G-spectra defined as in section 3: see

Definition 3.15. Most of this will be when k is of characteristic 0. ŨSpt
G

mot (ŨSpt
G

et) will denote the corresponding

categories of spectra with Ũ : SptG
mot → ŨSpt

G

mot and Ũet : SptG
et → ŨSpt

G

et denote the corresponding forgetful
functors, forgetting the group action.

In case char(k) = p > 0, we will let EG ∈ SptG
mot be a fixed commutative ring spectrum which is Z(`)-local

for some prime ` 6= char(k). We will let SptG
mot,EG denote the subcategory of EG-module spectra in SptG

mot. For

SptG
et, the ring spectra EG we consider will be `-complete, for some ` 6= char(k). It may be important to point out

that the only spectra in SptG
mot,EG and SptG

et,EG that we consider will be the EG-suspension spectra of schemes

with G-action. Moreover, the G-equivariant ring spectra EG that we consider will be mostly restricted to the list
given in (3.2.7). i.e. Other than the sphere spectrum SG, the ring spectra EG will be one of the following: (i)

SG[p−1] if the base scheme S is a field of characteristic p, (ii) SG
(`) and (iii) ŜG

` , where ` is a prime different from

the characteristic of the base field. It may be important to recall the terminology in 3.12: if EG is a commutative
G-equivariant ring spectrum E = i∗(P̃Ũ(EG)) is a ring spectrum in Spt.

Now one may recall, as we observed in (3.3.14), that given X ,Y ∈ SptG
mot, one may find a functorial cofibrant

replacement X̃ → Ũ(X ) in ŨSpt
G

mot and a functorial fibrant replacement Ũ(Y) → Ŷ in ŨSpt
G

mot, with X̃ →
Ũ(X ), Ũ(Y)→ Ŷ ∈ ŨSpt

G

mot. The functoriality of the replacement shows that these replacements come equipped



Motivic and Étale Spanier-Whitehead duality and the Becker-Gottlieb transfer 31

with actions by G making them belong to SptG. Therefore, it is possible to define

X
L
∧Y = Ũ(X̃ ) ∧ Y, RHom(X ,Y) = Hom(Ũ(X̃ ), Ũ(Ŷ)), D(X ) = RHom(X ,SG)

with X
L
∧Y,RHom(X ,Y),D(X ) ∈ SptG

mot. Similar conclusions will hold when EG ∈ SptG
mot is a commutative ring

spectrum with the corresponding smash product ∧EG and HomEG as well as in the étale case.

Here we make use of the chain of equivalences of stable model category structures on ŨSpt
G

mot, USptG
mot and

Sptmot proven in Proposition 3.11 which are in fact given by weakly monoidal functors. Therefore, [DP84, 2.2
Theorem] (see also Proposition 2.7) shows that the theory of Spanier-Whitehead duality currently known in Sptmot

carries over to ŨSpt
G

mot: therefore, without the comparison results proven in section 3.2 and 3.3 of this paper,
it would not be possible to construct a theory of motivic Becker-Gottlieb transfer that applies to torsors and
Borel-style generalized equivariant motivic (and étale) cohomology theories.

6.1. The G-equivariant pre-transfer. Let X denote a smooth quasi-projective scheme, or more generally an
unpointed simplicial presheaf defined on SmS, subject to the requirement that ΣTX+ ∈ Sptmot be dualizable.

Corresponding results will hold if X+ ∧ E is dualizable in Sptmot,E where EG ∈ SptG is a commutative ring

spectrum, with E = i∗(P̃Ũ(EG)) ∈ Spt denoting the corresponding non-equivariant ring spectrum. Then the
equivariant sphere spectrum SG will be replaced by EG everywhere in the construction discussed below.

We will further assume X is provided with an action by the linear algebraic group G. Associated to any G-
equivariant self-map f : X→ X, over the base field k, we will presently define a pre-transfer map following roughly
the definition given in Definition 2.8. The main improvement we need is to make all the maps that enter into
the definition of the pre-transfer G-equivariant. We will define the G-equivariant pre-transfer as the composition

of a sequence of maps in ŨSpt
G

which are all G-equivariant. Throughout the following definition we will often
abbreviate SG ∧X+ to just X+.

Definition 6.1. (i) Accordingly we proceed to first define a G-equivariant co-evaluation map, where the source
is the G-sphere spectrum SG. We start with the evaluation map e : D(X+) ∧ X+ → SG. On taking its dual in

ŨSpt
G

, we obtain the map

(6.1.1) c : SG ' D(SG)→ D(D(X+) ∧X+)
'←D(X+) ∧DD(X+)

'←D(X+) ∧X+
τ→X+ ∧D(X+).

The above composition will be the co-evaluation map c as in Definition 2.2.2. Observe that all the maps above are
G-equivariant and the maps going in the wrong-direction are in fact weak-equivalences.

(ii) Now we may compose with the remaining maps in Definition 2.2.2, which are all G-equivariant and go from
the term on the left to the term on the right, to obtain the G-equivariant pre-transfer, denoted tr(fY)′G, which will
be the following composition:

(6.1.2) trG(f)′ : SG ' D(SG)→ D(D(X+) ∧X+)
'←D(X+) ∧DD(X+)

'←D(X+) ∧X+
τ→X+ ∧D(X+)→ SG ∧X+.

Here the last map is the composition

X+ ∧D(X+)
τ→D(X+) ∧X+

id∧∆→ D(X+) ∧X+ ∧X+
id∧f∧f→ D(X+) ∧X+ ∧X+

e∧id→ SG ∧X+.

Observe that all the spectra that make up the above diagram are G-equivariant and therefore, the above diagram

could be viewed as a diagram in ŨSpt
G

where all the spectra and the maps are G-equivariant.4

(iii) Given Y, another smooth quasi-projective scheme, or more generally an unpointed simplicial presheaf defined
on SmS, provided with an action by G, we define tr(fY)′G : Y+ ∧ SG → Y+ ∧ SG ∧X+ to be idY+

∧ tr(f)′G.

(iv) We define the trace, τX(f)G to be the composition of the pre-transfer with the map SG∧X+ → SG collapsing
all of X+ to Spec k+. Similarly we define τX(fY)G to be the composition of the pre-transfer trG(fY)′ with the map
Y+ ∧ SG ∧X+ → Y+ ∧ SG.

(v) If EG ∈ SptG is a commutative ring spectrum, and E ∧X+ ∈ Spt is dualizable, one defines co-evaluation,
transfer and trace maps similarly by replacing SG ∧X+ (SG) by EG ∧X+ (EG, respectively).

The next goal is to define a transfer map that will define a wrong-way map in generalized cohomology for a
G-torsor p : E→ B as well as in Borel-style equivariant generalized motivic (and étale) cohomology associated to
actions of linear algebraic groups. Our approach follows closely the construction in [BG75, section 3], in spirit.

4One can put in a slightly more general form of the diagonal map ∆, which will in fact be important for establishing the localization

or Mayer-Vietoris properties of the pre-transfer. This is discussed in [JP-1, Definition 2.4].
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6.1.3. Convention. Let G denote a linear algebraic group. We need to carry out the construction of the transfer
in two distinct contexts: (i) when the group G is special in Grothendieck’s terminology: see [Ch]. For example, G
could be a GLn for some n or a finite product of GLns and (ii) when G is not necessarily special. In the first
case, every G-torsor is locally trivial on the Zariski (and hence the Nisnevich) topology while in the second case
G-torsors are locally trivial only in the étale topology.

In both cases, we will let BGgm,m (EGgm,m) denote the m-th degree approximation to the classifying space of
the group G (its principal G-bundle, respectively) as in [Tot99], [MV99] or [CJ19]. These are, in general, quasi-
projective smooth schemes over k. It is important for us to observe that each EGgm,m , with m sufficiently large
has k-rational points, where k is the base field. (This will imply that BGgm,m , with m sufficiently large also has
k-rational points.)

Next we start with a G-torsor E → B, with both E and B smooth quasi-projective schemes over S. We will
further assume that B is always connected. Next, we will find affine replacements for these schemes. One may first

find an affine replacement B̃ for B ( ˜BGgm,m for BGgm,m) by applying the well-known construction of Jouanolou

(see [Joun73]) and then define Ẽ ( ˜EGgm,m) as the pull-back:

(6.1.4)

Ẽ = B̃×
B

E, p̃ : Ẽ→ B̃, ( ˜EGgm,m = ˜BGgm,m ×
BGgm,m

EGgm,m , p̃m : ˜EGgm,m → ˜BGgm,m)

πY : ẼY×X = Ẽ×G (Y ×X)→ Ẽ×G Y = ẼY, (πY,m : ˜EGgm,m ×G (Y ×X)→ ˜EGgm,m ×G Y)

π : ẼY = Ẽ×G Y → B̃, (πm : Ẽm,Y = ˜EGgm,m ×G Y → ˜BGgm,m = B̃m.)

6.2. Construction of the transfer. Next we proceed to construct the transfer as a stable map, i.e. a map in
HSptmot, when ΣTX+ is dualizable in HSptmot and G is special (and a minor variant of this map when G is
non-special):

(6.2.1) tr(fY) : ΣT(Ẽ×GY)+ → ΣT(Ẽ×G(Y×X))+ (tr(fY) : (ΣT( ˜EGgm,m×GY)+ → ΣT( ˜EGgm,m×G(Y×X))+.

This will be constructed as a composition of several maps in Sptmot, with some of the maps going the wrong-way,
and these wrong-way maps will all be weak-equivalences in Sptmot. In case E ∧X+ ∈ Sptmot,E is dualizable for a

commutative ring spectrum EG ∈ SptG with E = i∗(P̃Ũ(EG)), (E ∧ X+ ∈ Sptet,E is dualizable for a commutative

ring spectrum EG ∈ SptG
et, so that E is `-complete for some prime ` 6= char(k), respectively) the transfer we obtain

will be of the following form when G is special (and a variant of this map when G is non-special):

(6.2.2) tr(fY) : E∧(Ẽ×GY)+ → E∧(Ẽ×G(Y×X))+ (tr(fY) : E∧( ˜EGgm,m×GY)+ → E∧( ˜EGgm,m×G(Y×X))+.)

Remark 6.2. The following remarks may provide some insight and motivation to the construction of the transfer
discussed in Steps 0 through 5 below. We have tried to define a transfer that depends only on the G-object X
and the G-equivariant self-map f and which does not depend on any further choices. This makes it necessary to
start with the G-equivariant pre-transfer as in (6.1.2). As a result, we are forced to make use of the framework

of the category ŨSpt
G

. However, if one chooses to replace the G-equivariant sphere spectrum SG by just the
suspension spectrum of the Thom-space TV, for a fixed (but large enough) representation V of G, then the use of

the category ŨSpt
G

could be circumvented by just using a variant of Proposition 3.1 valid for suspension spectra.
The construction of the transfer in [BG75] in fact adopts this latter approach: in their framework, the co-evaluation
map corresponds to a Thom-Pontrjagin collapse map associated to the Thom-space of a fixed G-representation.
Such an approach does not seem to work in general in the motivic context, though it could be made to work when
X denotes a projective smooth scheme, provided one makes use of the Voevodsky collapse (see Definition 10.8) in
the place of the classical Thom-Pontrjagin collapse.

Step 0: The Borel construction applied to simplicial presheaves with G-action. We break this discussion into
two cases, depending on whether the group G is special in Grothendieck’s classification (see [Ch]). In both cases,

PShG/S will denote the category of pointed G-equivariant presheaves on the big Nisnevich site of S provided with
a chosen map to S as in (3.0.6).

Case 1: when G is special. Recall this includes all the linear algebraic groups GLn, SLn, Sp2n, n ≥ 1. In this
case, we start with the construction (i.e. the functor):

(6.2.3) PShG/S→ PSh/B̃,X 7→ Ẽ×G X
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where the quotient construction is explained below. (If we start with an unpointed simplicial presheaf X, we let
X = X+ and we will always assume that the action by G on X preserves the base point. Therefore, there is a

canonical section B̃→ Ẽ×G X .) Clearly this extends to a functor:

(6.2.4) SptG/S→ ŨSpt
G

/B̃,X 7→ Ẽ×G X .

In (6.2.3), one cannot view the product Ẽ×X as a presheaf on the big Nisnevich site and take the quotient by
the action of G, with G again viewed as a Nisnevich presheaf: though such a quotient will be a presheaf on the big

Nisnevich site, this will not be the presheaf represented by the scheme (or algebraic space) Ẽ×G X , when X is a
scheme. In order to get this latter presheaf, when G is special, one needs to start with a Zariski open cover {Ui|i}
of B̃ over which Ẽ is trivial, and then glue together the sheaves Ui ×X making use of the gluing data provided by

the torsor Ẽ→ B̃.

A nice way to view this construction is as follows, at least when X is a Nisnevich sheaf: one needs to in fact take

the quotient sheaf associated to the presheaf quotient of Ẽ × X by the G-action on the big Nisnevich site. Then
this produces the right object.

Denoting by (Ẽ×GX )|Ui
the restriction of Ẽ to Ui, it is clear that (Ẽ×GX )|Ui

identifies with Ui×X . Therefore,

it is clear that the construction in (6.2.4) sends a G-equivariant map α : X → Y so that Ũ(α) is a (stable)

weak-equivalence in ŨSpt
G

/S to a (stable) weak-equivalence in ŨSpt
G

/B̃.

Case 2: Next assume that G is not necessarily special, in which case we will assume the base field k is infinite
to avoid the issues discussed in [MV99, Example 2.10, 4.2]. Observe that the list of non-special linear algebraic
groups includes all the linear algebraic groups such as all finite groups, PGLn, O(n), n ≥ 1 etc. S will denote the
base scheme Spec k. Let H(Sm/Set,A1) denote the A1-localized homotopy category of simplicial presheaves on the
big étale site Sm/Set. Let BG denote the simplicial classifying space of G viewed as a simplicial presheaf on the

big étale site Sm/Set and let ˜BGgm,m
et denote the scheme ˜BGgm,m viewed as a simplicial presheaf on the big étale

site Sm/Set. Then the first observation we make is that one obtains the weak-equivalence

(6.2.5) BG ' lim
m→∞

˜BGgm,m
et

in H(Sm/Set,A1). To prove this one may proceed as follows. Either one may adopt the same arguments as in
[MV99, p. 131 and Lemma 2.5, Proposition 2.6 in 4.2] or consider the diagram:

(6.2.6) EG×G EGgm

p1

xx

p2

''
BG BGgm .

Then, one may observe that the fibers of both maps p1 and p2 over a strictly Hensel ring are acyclic: the fibers of
p1 are acyclic because we have inverted A1 (and therefore, EGgm is acyclic), and the fibers of p2 are acyclic because
they are the simplicial EG. Thus p1 and p2 induce weak-equivalences of the corresponding simplicial sheaves. (See
[J20, Theorem 1.5] for a similar argument at the level of equivariant derived categories.) Let ε : Sm/Set → Sm/SNis

denote the map of sites from the big étale site of S to the big Nisnevich site of S. It follows therefore that one
obtains the identification

(6.2.7) Rε∗(BG) ' lim
m→∞

Rε∗( ˜BGgm,m
et )5

in H(Sm/SNis,A1). (Here we will use the injective model structure on simplicial presheaves prior to A1-localization:
see 3.1.) In this case, the construction (6.2.3) now takes on the form:

X 7→ Rε∗(Ẽ×et
G (a ◦ ε∗)(X )), PShG/S

ε∗→PShG/Set
a→ShG/Set → PSh/Rε∗(B̃et)(6.2.8)

Here we have adopted the following conventions: the superscript et denotes the fact we are taking quotient sheaves

on the étale site, a denotes the functor sending a presheaf to the associated sheaf, and PSh/Rε∗(B̃et) denotes the

category of simplicial presheaves on Sm/SNis pointed over the simplicial presheaf Rε∗(B̃et). Moreover, U is the
forgetful functor sending a sheaf to the underlying presheaf.

5A main result of [MV99, Proposition 2.6] is that the term on the right is weakly-equivalent to lim
m→∞

ε∗( ˜BGgm,m)
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Clearly this extends to a functor

X 7→ Rε∗(Ẽ×et
G (a ◦ ε∗)(X )), SptG/S

U◦a◦ε∗→ SptG/Set → ŨSpt
G

/Rε∗(B̃et)(6.2.9)

If {Ui|i ∈ I} is an étale cover of B̃ over which Ẽ is trivial, the same argument as above shows that (Ẽ ×etG (a ◦
ε∗)(X ))|Ui = Ui× (a ◦ ε∗)(X ), so that the functor X 7→ Ẽ×et

G (a ◦ ε∗)(X ) sends a G-equivariant map α : X → Y for

which Ũ(α) is a (stable) weak-equivalence in ŨSpt
G

/S to a (stable) weak-equivalence in ŨSpt
G

et/B̃et. Therefore,

the functor X 7→ Rε∗(Ẽ ×et
G (a ◦ ε∗)(X )) sends a G-equivariant map α : X → Y for which Ũ(α) is a (stable)

weak-equivalence in ŨSpt
G

/S to a (stable) weak-equivalence in ŨSpt
G

/Rε∗(B̃et).

In case X is already a sheaf on the big étale site, (a ◦ ε∗)(X ) = X and therefore, we may replace (a ◦ ε∗)(X )
in (6.2.8) by just X in the definition of the Borel construction. (This applies to the case where X = X is a scheme.)

Terminology 6.3. Throughout the remainder of the paper, we will abbreviate the functor in (6.2.8) ( (6.2.9)) by

X 7→ Rε∗(Ẽ×et
G X ),X ∈ PShG/S, (X 7→ Rε∗(Ẽ×et

G X ),X ∈ SptG/S, respectively).

Though there is a discussion of the classifying spaces of linear algebraic groups in [MV99, 4.2], it lacks a
corresponding discussion on the Borel construction EGgm,m ×G X, for X a smooth scheme. We complete our

discussion, by providing a comparison of EGgm,m ×G X with Rε∗( ˜EGgm,m ×et
G X) when X is a smooth scheme.

We first replace lim
m→∞

BGgm,m
et and lim

m→∞
EGgm,m

et ×et
G X by fibrant simplicial presheaves B̂Get and ̂EGet ×et

G X so

that the induced map ̂EGet ×et
G X → B̂Get is a fibration with fiber X̂, which is a fibrant replacement for X. Let

U∞ = lim
m→∞

EGgm,m . Now one forms the cartesian square in PSh/Set:

(6.2.10) E(U∞,G)et ×etG X̂
//

��

̂EGet ×etG X

��
B(U∞,G)et

//
B̂Get.

Here E(U∞,G)et is the étale simplicial presheaf given in degree n by Un+1
∞ , and with the structure maps provided

by the projections of Um
∞ to the various factors U∞ and by the diagonal maps U∞ → Um

∞. B(U∞,G)et =
E(U∞,G)et/G. This square remains a cartesian square on applying the push-forward ε∗ to the Nisnevich site.
[MV99, Lemma 2.5, 4.2] shows that the resulting map in the bottom row is an isomorphism in H(Sm/SNis,A1),
so that so is the resulting map in the top row. Finally an argument exactly as on [MV99, p. 136] shows that one

obtains an identification ε∗(E(U∞,G)et ×etG X̂) ' ε∗(U∞ ×et
G X̂) = lim

m→∞
ε∗(EGgm,m ×et

G X̂). Therefore, we obtain

the identification for a smooth scheme X:

(6.2.11) lim
m→∞

Rε∗( ˜EGgm,m ×et
G X) = ε∗( ̂EGet ×et

G X) ' ε∗ lim
m→∞

(EGgm,m ×et
G X̂).

Finally, for convenience in the following steps, we will denote both the Borel constructions given in (6.2.4) and (6.2.9)

by the notation X 7→ Ẽ ×G X . Moreover, we will denote by B̃, the object denoted by this symbol in (6.1.4) when

G is special, and the object Rε∗(B̃et) considered in (6.2.8) when G is not special.

Step 1. As the next step in the construction of the transfer map tr(fY), we start with the G-equivariant pre-

transfer tr(fY)G in (6.1.2) to obtain the stable map over ẼY, i.e. as a composition of several maps in ŨSpt
G

/ẼY,
where the wrong-way maps are all weak-equivalences.

(6.2.12) Ẽ×G (Y+ ∧ SG)
id×GtrG(fY)′→ Ẽ×G (Y+ ∧ SG ∧X+).

(Here we are making use of the observation that the above Borel construction preserves weak-equivalences as
observed in Step 0, so that we can suppress the fact that the above map is in fact a composition of several maps,

some of which go the wrong-way as observed in (6.1.2).) On applying the construction Ẽ×G with a G-equivariant
ring spectrum EG (as in (3.2.7)) in the place of SG, the resulting stable map takes on the form:

(6.2.13) Ẽ×G (Y+ ∧ EG)
id×GtrG(fY)′→ Ẽ×G (Y+ ∧ EG ∧X+).

Remark 6.4. The remaining steps in the construction of the transfer may be easily explained by fact that the sphere
spectrum SG and the ring spectrum EG appearing above have non-trivial actions by G, so that neither the source

nor the target of the maps in (6.2.12) and (6.2.13) will become suspension spectra of ẼY or Ẽ×G (Y×X)+ without
the considerable efforts in the remaining steps. We will discuss the remaining steps in detail only for the sphere
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spectrum SG. This suffices, since the only other ring spectra EG we consider will be restricted to those appearing
in the list in (3.2.7).

Step 2. Next let V denote a fixed (but arbitrary) finite dimensional representation of the group G.6 At this point
we need to briefly consider two cases, (a) where G is special and (b) where it is not. In case (a), it should be clear
that

(6.2.14) Ẽ×G V is a vector bundle ξV on the affine scheme B̃,

where the quotient construction is done as in (6.2.3), that is on the Zariski site. In case (b), one considers instead:

(6.2.15) Ẽ×etG V,

where the quotient is taken on the étale topology. Apriori, this is a vector bundle that is locally trivial on the étale

topology of B̃. But any such vector bundle corresponds to a GLn-torsor on the étale topology of B̃, and hence (by

Hilbert’s theorem 90: see [Mil, Chapter III, proposition 4.9]), is in fact locally trivial on the Zariski topology of B̃.
We will denote this vector bundle also by ξV.

Since B̃ is an affine scheme over Spec k, we can find a complimentary vector bundle ηV on B̃ so that

(6.2.16) ξV ⊕ ηV is a trivial bundle over B̃ and of rank N, for some integer N.

For the remainder of this step, we will consider the case when Ẽ = ˜EGgm,m and B̃ = ˜BGgm,m . We will

denote the first by Em and the latter by Bm. We will denote the vector bundle ˜EGgm,m ×G V ( ˜EGgm,m ×etG V)

on the affine scheme Bm = ˜BGgm,m by ξV
m. The complimentary vector bundle ηV chosen above will now denoted

ηV
m. We proceed to show that we can choose the integer N independent of m, so that a single choice of N will

work for all m. Since the map EGgm,m → BGgm,m is affine, one can readily see that the scheme ˜EGgm,m is also

an affine scheme. Let Rm denote the co-ordinate ring of ˜EGgm,m and let R = lim
∞←m

Rm. We proceed to show that,

now (R⊗
k

V)G is a finitely generated projective module over the ring RG. Let Im be the ideal defining ˜BGgm,m as a

closed subscheme in Spec(RG). Then, RG/Im ⊗
RG

(R⊗
k

V)G corresponds to the vector bundle ξV
m, and therefore, is a

finitely generated projective RG/Im-module. In fact, if M denotes a maximal ideal in the ring RG and Īm denotes
the image of the ideal Im in the local ring RG

(M), then one can see that the ranks of the inverse system of free

modules {RG
(M)/Īm ⊗

RG
(R⊗

k
V)G|m} are the same finite integer. Therefore, their inverse limit, which identifies with

(R⊗
k

V)G
(M) is a free RG

(M)-module. It follows that, (R⊗
k

V)G is a finitely generated projective module over the ring

RG.

Therefore, there exists some finitely generated free RG-module F (of rank N) and a split surjection

(6.2.17) ζ : F � (R⊗
k

V)G.

Then one sees that the induced maps

(6.2.18) ζ/Im : RG/Im ⊗
RG

F � RG/Im ⊗
RG

(R⊗
k

V)G

are also split surjections for each m, and these splittings are in fact compatible, as they are all induced by the
splitting to the map in (6.2.17). Therefore, we obtain a compatible collection of complements to the inverse system

of bundles ξV
m in the trivial bundle of rank N over ˜BGgm,m , compatible as m varies. We denote the complement to

ξV
m in the trivial bundle of rank N over ˜BGgm,m as ηV

m.

Next we will consider the case the group G is special, in which the case the arguments in the following paragraph

hold. Denoting by TV the Thom-space of the representation V, the bundle ˜EGgm,m ×G TV is a sphere-bundle over
Bm, which will be denoted S(ξV

m⊕ 1) in the terminology of (10.2.2). Similarly S(ηV
m⊕ 1) denotes the corresponding

sphere bundle over Bm. Now Lemma 10.5 (see below) shows that one obtains the identification:

(6.2.19) S(ξV
m ⊕ 1) ∧Bm S(ηV

m ⊕ 1) ' S(ξV
m ⊕ ηV

m ⊕ 1).

Observe that there is a canonical section sξV : Bm → ˜EGgm,m ×G TV = S(ξV
m ⊕ 1), and a canonical section

sη : Bm → S(ηV
m ⊕ 1), which together define a section sm : Bm → S(ξV

m ⊕ 1) ∧Bm S(ηV
m ⊕ 1) of pointed simplicial

presheaves over Bm = ˜BGgm,m . Then the quotient (S(ξV
m⊕1)∧Bm S(ηV

m⊕1))/s(Bm) identifies with the Thom-space

6Here we use V to denote both the representation of G and the corresponding symmetric algebra over k.
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of the bundle ξV
m⊕ηV

m. Since ηV
m was chosen to be a vector bundle complimentary to ξV

m, ξV
m⊕ηV

m is a trivial bundle

(of rank N) so that the above Thom-space identifies with T∧N(B̃G
gm,m

)+. Moreover, this holds independent of m.

In case the group G is not special, one has to replace ˜EGgm,m×GTV by Rε∗( ˜EGgm,m×
G

etε∗(TV)) and S(ξV
m⊕ηV

m⊕1)

with Rε∗(S(ε∗(ξV
m ⊕ ηV

m ⊕ 1))), making use of Lemma (6.7) to obtain the corresponding statement.

Let πY denote either of the two projections Ẽ×G(Y×X)→ Ẽ×G(Y) or Em = ˜EGgm,m×G(Y×X)→ ˜EGgm,m×GY =
Bm. Since the second case is subsumed by the first, we will only discuss the first case explicitly in steps 3 through
5.

Step 3. First we will again assume that the group-scheme G is special. Now observe that the sphere bundle

Ẽ×G (Y×TV) identifies with the pullback S(π∗(ξV)⊕1) = π∗(S(ξV⊕1)) and the sphere bundle Ẽ×G (Y×X×TV)
identifies with the pullback S(π∗Yπ

∗(ξV)⊕ 1) = π∗Yπ
∗(S(ξV ⊕ 1)). Next consider

S(π∗Yπ
∗(ξV)⊕ 1) ∧ẼY S(π∗Yπ

∗
Y(ηV)⊕ 1) = π∗Yπ

∗(S(ξV ⊕ 1)) ∧ẼY π∗Y(S(ηV ⊕ 1)).

This is a sphere bundle over ẼY and it has a canonical section, which we will denote σ, collapsing which provides
the Thom-space of the bundle S(π∗Yπ

∗(ξV ⊕ ηV ⊕ 1)). Since ηV was chosen to be complementary to ξV, it follows

that the bundle π∗Yπ
∗(ξV ⊕ ηV) is trivial, so that the resulting Thom-space identifies with T∧N(Ẽ×G (Y ×X))+.

When the group-scheme G is not special, one adopts an argument as in the last paragraph of Step 2 to obtain
a corresponding result.

Step 4. Observe that there is section t′ : ẼY → Ẽ ×G (Y × (X+ ∧ TV)). Combining that with the canonical

section ẼY → S(π∗(ηV ⊕ 1)) defines a section t : ẼY → (Ẽ ×G (Y × (X+ ∧ TV)) ∧ẼY S(π∗(ηV ⊕ 1)). Now a

key observation is that (Ẽ×
G

(Y × (X+ ∧ TV)) ∧ẼY S(π∗(ηV ⊕ 1)) is an object defined over ẼY and that collapsing

the section t also identifies the resulting object with (S(π∗Yπ
∗(ξV ⊕ 1)) ∧ẼY×X S(π∗Yπ

∗(ηV ⊕ 1)))/σ(ẼY×X), where

σ : ẼY×X → S(π∗Yπ
∗(ξV ⊕ 1)) ∧ẼY S(π∗Yπ

∗(ηV ⊕ 1)) is the canonical section. (See [BG75, (3.7) and (3.8)] for the
classical case.)

One may see this as follows, first under the assumption that the group-scheme G is special. Assume that {Ui|i}
is a Zariski open cover of B̃ over which the G-torsor p : Ẽ→ B̃ trivializes. (S(π∗Yπ

∗(ξV ⊕ 1))|Ui
now is of the form:

Ui× (Y×X×TV)→ Ui×Y×X. We may assume that the vector bundle ηV also trivializes over the cover {Ui|i}.
Then (S(π∗Yπ

∗(ξV ⊕ 1)) ∧ẼY×X S(π∗Yπ
∗(ηV ⊕ 1)))|Ui

= Ui × ((Y × X) × (TV ∧ TW)), where W corresponds to the

fibers of the vector bundle ηV. The section σ|Ui
: ẼY×X|Ui

→ (S(π∗Yπ
∗(ξV ⊕ 1)) ∧ẼY×X S(π∗Yπ

∗(ηV ⊕ 1)))|Ui
now

corresponds to the canonical section Ui × Y × X → Ui × ((Y × X) × (TV ∧ TW)). Intermediate to collapsing the
section σ is to take the pushout of

(6.2.20) ẼY ← Ẽ×G (Y ×X)→ S(π∗Yπ
∗(ξV ⊕ 1)) ∧ẼY×X S(π∗Yπ

∗(ηV ⊕ 1))).

Over Ui, this corresponds to taking the pushout of Ui × Y ← Ui × (Y × X)→ Ui × ((Y × X)× (TV ∧ TW)). The

resulting pushout then identifies with Ui ×Y× (X+ ∧ (TV ∧TW)), which in fact identities with (Ẽ×G (Y× (X+ ∧
TV))) ∧ẼY S(ηV ⊕ 1))|Ui

.

Observe that collapsing the section σ can be done in two stages, by first taking the pushout in (6.2.20) and then

by collapsing the resulting section from ẼY. These complete the verification of the observation in Step 4, at least
in the case the group-scheme G is special. When G is not special, one adopts a similar argument using an étale

cover {Ui|i ∈ I} of B̃ over which Ẽ→ B̃ is trivial.

Step 5. Let s : ẼY → Ẽ×G (Y+ ∧ TV) ∧ẼY S(π∗(ηV ⊕ 1)) denote the canonical section. Then, we proceed to show
that the sections s and t are compatible in the sense that the diagram

(6.2.21) ẼY

s //
t

**

Ẽ×G (Y+ ∧ TV) ∧ẼY S(π∗(ηV ⊕ 1))

(id×GtrG(fY)′(TV))∧ẼY id
��

Ẽ×G ((Y ×X)+ ∧ TV) ∧ẼY S(π∗(ηV ⊕ 1)))
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commutes, that is, in the sense discussed next. Here (id×
G
trG(fY)′(TV) is the component of the map of spectra

id×G trG(fY)′ indexed by TV. One may break this map into a sequence of maps

(6.2.22)
Y0(TV) = Ẽ×G (Y+ ∧ TV)→ Y1(TV) = Ẽ×G (Y+ ∧ X1(TV))← Y2(TV) = Ẽ×G (Y+ ∧ X2(TV))

→ Y3(TV) = Ẽ×G ((Y ×X)+ ∧ TV),

where the map {TV → X1(TV) ← X2(TV) → X+ ∧ TV|V} is the G-equivariant pre-transfer considered in (6.1.2).

Observe that each of the objects in (6.2.22) is pointed over ẼY. (When the group is non-special, the quotient

sheaves in the diagram (6.2.22), and in the discussion below, are all taken in the étale topology on ẼY and one
will have to replace the diagram in (6.2.21) with Rε∗ applied to all the terms there.) One may observe that the

corresponding sections from ẼY are all compatible as the group action leaves the base points of TV,X1(TV),X2(TV)

and X+ ∧ TV fixed. This results in the following commutative diagram over ẼY:
(6.2.23)

Y0(TV) ∧ẼY S(ηV ⊕ 1)
// Y1(TV) ∧ẼY S(ηV ⊕ 1) Y2(TV) ∧ẼY S(ηV ⊕ 1)

oo // Y3(TV) ∧ẼY S(ηV ⊕ 1)

ẼY

y0=s

OO

y1

44

y2

22

y3=t

11

By the commutativity of the triangle in (6.2.21), we mean the commutativity of all the corresponding triangles

that make up the diagram in (6.2.23) and this is now clear in view of the above observations. When ẼY = Em,Y =

˜EGgm,m ×G Y, one may again observe that the corresponding sections from Em,Y are all compatible as the group
action leaves the base points of TV,Y+ ∧ X1(TV),Y+ ∧ X2(TV) and (Y × X)+ ∧ TV fixed. This results in a
corresponding diagram over each Em,Y and the arguments in Step 2 above show that such commutative triangles
are compatible as m varies.

Moreover, the commutativity of the diagram (6.2.23) shows that there is an induced map on the quotients by

the sections yi, i = 0, 1, 2, 3. Observe that on taking smash product over ẼY with Ẽ ×G ((Y × X)+ ∧ TW) ∧ẼY

S(π∗(ηW ⊕ 1)) = (ẼY × Tdim(W)+rank(ηW))+ , one obtains a map of the diagram in (6.2.23) to the corresponding
diagram with V ⊕W in the place of V. This observation shows that if we define spectra Zi, i = 0, 1, 2, 3 in SptS

by

(6.2.24) Zi,NV = (Yi(TV) ∧ẼY S(π∗(ηV ⊕ 1)))/yi(ẼY),NV = dim(V) + rank(ηV)

and if NW = dim(W) + rank(ηV), the smash product pairings TNW ∧ Zi,NV
→ Zi,NV⊕W

are compatible with the
maps between the Zi considered above. (Note that these spectra are indexed by the integers {NV|V} and not by
all the non-negative integers. However, since {NV|V} is cofinal in N, this suffices.) One may also observe that the
wrong-way map Z2 → Z1 is a stable equivalence. Therefore, collapsing out the sections yi, i = 0, 3, then provides
the stable map (which in fact is a composition of several maps, with the ones going in the wrong direction being
stable weak-equivalences)
(6.2.25)

tr(fY) : ΣT(Ẽ×G Y)+ → ΣT(Ẽ×G (Y ×X))+, tr(fY)m : ΣT( ˜EGgm,m ×G Y)+ → ΣT( ˜EGgm,m ×G (Y ×X))+

in case the group G is special, and the following stable map (which in fact is a composition of several maps, with
the ones going in the wrong direction being stable weak-equivalences) in case G is not special:
(6.2.26)

tr(fY) : ΣTRε∗(Ẽ×et
GY)+ → ΣTRε∗(Ẽ×et

G(Y×X))+, tr(fY)m : ΣTRε∗( ˜EGgm,m×et
GY)+ → ΣTRε∗( ˜EGgm,m×et

G(Y×X))+.

These maps are also compatible as m varies, as observed above and in Step 2.

Definition 6.5. (The transfer.) Therefore, taking the colimit over m → ∞, and making use of the identification
in (6.2.11), one obtains the following stable transfer map (in HSptmot) on the Borel construction:

tr(fY) : ΣT(Ẽ×G Y)+ → ΣT(Ẽ×G (Y ×X))+,(6.2.27)

tr(fY) : ΣT(ẼGgm ×G Y)+ → ΣT(ẼGgm ×G (Y ×X))+, when G is special, and

tr(fY) : ΣTRε∗(Ẽet ×et
G Y)+ → ΣTRε∗(Ẽet ×et

G (Y ×X))+,(6.2.28)

tr(fY) : ΣTRε∗(ẼGgm
et ×et

G Y)+ → ΣTRε∗(ẼGgm
et ×et

G (Y ×X))+, when G is not special.
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Here ẼGgm ×G Y = lim
m→∞

˜EGgm,m ×G Y and ẼGgm
et ×etG (Y ×X) = lim

m→∞
˜EGgm,m

et ×G (Y ×X).

If EG denotes a commutative G-equivariant ring spectrum as in (3.2.7), E = i∗(P̃Ũ(EG)) is the corresponding

ring spectrum in Spt, and E ∧X+ is dualizable in USptG
mot,E (USptG

et,E), the same constructions applied to the
G-equivariant pre-transfer (6.1.2) and making use of smashing with the spectrum E in the place of smashing with
S provides us with the transfer map:

tr(fY)E : E ∧ (Ẽ×G Y)+ → E ∧ (Ẽ×G (Y ×X))+,(6.2.29)

tr(fY)E : E ∧ (ẼGgm ×G Y)+ → E ∧ (ẼGgm ×G (Y ×X))+, when G is special, and

tr(fY)E : E ∧ Rε∗(Ẽet ×et
G Y)+ → E ∧ Rε∗(Ẽet ×et

G (Y ×X))+,

tr(fY)E : E ∧ Rε∗(ẼGgm
et ×et

G Y)+ → E ∧ Rε∗(ẼGgm
et ×et

G (Y ×X))+, when G is non-special.

Remark 6.6. Suppose X = G/H for a closed linear algebraic subgroup and Y = Spec k . Then the identification

Rε∗(ẼGgm
et ×et

G G/H)+ ' Rε∗(BHgm
et ) ' ε∗( lim

m→∞
˜BHgm,m)

shows that in this case the target of the transfer map in (6.2.26) is ΣT(B̃Hgm)+ and the target of the transfer map

in (6.2.29) is E ∧ (B̃H
gm

)+. Observe that this holds irrespective of whether G or H is special.

Lemma 6.7. Assume the situation as in (6.2.8). Let P denote a pointed simplicial presheaf on the big Nisnevich

site with G-action and let S(η⊕1) denote the (fiber-wise Thom-space ) of a vector bundle η on the scheme B̃. Then
the natural map

Rε∗(Ẽ×G (a ◦ ε∗)(P)) ∧
Rε∗(B̃et)

Rε∗(S((a ◦ ε∗)(η ⊕ 1))→ Rε∗(Ẽ×G (a ◦ ε∗)(P) ∧
(a◦ε∗)(B̃)

S((a ◦ ε∗)(η)⊕ 1))

is a weak-equivalence.

Proof. First observe that there is a natural map from the left-hand-side to the right-hand-side. Therefore, it suffices

to prove this is a weak-equivalence locally on the Zariski site of B̃. Thus we reduce to the case where η is a trivial
bundle. Moreover, as we work in the non-equivariant motivic homotopy theory (see Proposition 3.11 which shows

the stable homotopy category associated to ŨSpt
G

is equivalent to HSpt), it suffices to consider the case of a
trivial line bundle. In this case S(η ⊕ 1) is just T = P1.

Let X ∈ Sptmot. Now it suffices to show that one obtains an isomorphism (between Homs in the appropriate
stable homotopy category):

(6.2.30) [X ,Rε∗(Ẽ×G (a ◦ ε∗)(P)) ∧T] ∼= [X ,Rε∗(Ẽ×G (a ◦ ε∗)(P) ∧ (a ◦ ε∗)(T))]

The term on the left identifies with [X ∧T−1,Rε∗(Ẽ×G (a ◦ ε∗)(P))] which then identifies with

[a(ε∗(X )∧ ε∗(T−1)), Ẽ×G (a ◦ ε∗)(P)]. The term on the right also identifies with the same term, by making use of
the adjunction between ε∗ and Rε∗. This completes the proof. �

6.3. Notational terminology for the rest of the paper. Let G denote a linear algebraic group over a perfect

base field k acting on a smooth scheme X. Henceforth, we will let BG denote lim
m→∞

˜BGgm,m . Recall this means

we start with the finite dimensional scheme BGgm,m and replace it by an affine scheme making use of Jouanolou’s

technique. Then EG will denote lim
m→∞

EGgm,m ×
BGgm,m

˜BGgm,m and EG×G X the quotient of EG×X by the diagonal

action of G. The ring spectra E ∈ Sptmot we consider will always be obtained as E = i∗(P̃Ũ(EG)) for some

commutative ring spectrum EG ∈ SptG
mot.

Examples 6.8. The following are some notable examples of such a transfer.

(1) Let i : H→ G denote a closed immersion of linear algebraic groups over the base field, neither of which is
assumed to special. Let X = G/H with the obvious G-action, Y = Spec k, and let f : G/H → G/H denote
any G-equivariant map. Assume that either ΣTG/H+ is dualizable in Sptmot or that E is a commutative
ring spectrum in Sptmot and ` is a prime different from char(k) so that E is Z(`)-local with E ∧ G/H+

dualizable in Sptmot,E . Then one may identify ΣT(EG×GG/H)+ ' ΣTBH+ in the motivic stable homotopy
category so that the transfer in the first case is tr(fY) : ΣTBG+ → ΣTBH+ and in the second case is
tr(fY)G : E ∧ BG+ → E ∧ BH+.



Motivic and Étale Spanier-Whitehead duality and the Becker-Gottlieb transfer 39

(2) Let i : H→ G be as above and let Y denote a quasi-projective scheme (or an unpointed simplicial presheaf
on Sm/S) with an action by H. Assume further that E is a commutative ring spectrum in Sptmot and ` is a
prime different from char(k) so that E is Z(`)-local. Then, the G-scheme G×H Y identifies as a G-scheme
with G/H × Y (provided with the diagonal action by G). Clearly G/H is dualizable in Sptmot in case
char(k) = 0 and E ∧G/H+ is dualizable in Sptmot,E in case char(k) = p > 0 . The corresponding transfer,
when both G and H are special, is then the stable map tr(idY) : ΣT(EG×G Y)+ → ΣT(EG×G (G×H Y))+ '
ΣT(EH ×H Y)+ in the first case and the map tr(idY) : E ∧ (EG ×G Y)+ → E ∧ (EG ×G (G ×H Y))+ '
E ∧ (EH×H Y)+ in the second case. In case these are not special, one obtains corresponding stable transfer
maps involving Rε∗ as in (6.2.26) and (6.2.29).

7. Basic properties of the transfer

Throughout this section (and for the remainder of the paper) we will adopt the notational conventions in 6.3.

Proposition 7.1. (Naturality with respect to base-change and change of groups) Let G denote a linear algebraic
group over k and let X, Y denote smooth quasi-projective G-schemes over k or unpointed simplicial presheaves on
Sm/S provided with G-actions. Let p : E→ B denote a G-torsor with E and B smooth quasi-projective schemes over
k, with B connected and let πY : E×G (Y×X)→ E×G Y denote any one of the maps considered in Theorem 1.1(a),
(b) or (c). Let f : X→ X denote a G-equivariant map.

Let G′ denote a closed linear algebraic subgroup of G, p′ : E′ → B′ a G′-torsor with B′ connected, and Y′ a
G′-quasi-projective scheme over k or an unpointed simplicial sheaf Sm/S provided with an G′-actions, so that it
comes equipped with a map Y′ → Y that is compatible with the G′-action on Y′ and the G-action on Y. Further,
we assume that one is provided with a commutative square

E′
//

��

E

��
B′

//
B

compatible with the action of G′ (G) on E′ (E, respectively). Let πY′ : E′×G′ (Y
′×X)→ E′×G′ Y

′ denote any one
of the maps considered in Theorem 1.1(a), (b) or (c).

Then if ΣTX+ is dualizable in Sptmot, the square

ΣT(E′ ×G′ (Y′ ×X))+
//
ΣT(E×

G
(Y ×X))+ (ΣTRε∗(E

′ ×et
G′ ε
∗(Y′ ×X))+

//
ΣTRε∗(E×et

G ε∗(Y ×X))+

ΣT(E′ ×G′ Y′)+

tr(fY′ )

OO

//
ΣT(E×G Y)+

tr(fY)

OO

ΣTRε∗(E
′ ×et

G′ ε
∗(Y′))+

tr(fY′ )

OO

//
ΣTRε∗(E×et

G ε∗(Y))+)

tr(fY)

OO

commutes in the motivic stable homotopy category when G is special (G is not necessarily special, respectively).
Next let E denote a commutative ring spectrum in Sptmot with E ∧X+ dualizable in Sptmot,E . Then the square

E ∧ (E′ ×G′ (Y′ ×X))+
// E ∧ (E×

G
(Y ×X))+ (E ∧ Rε∗(E

′ ×et
G′ ε
∗(Y′ ×X))+

// E ∧ Rε∗(E×et
G ε∗(Y ×X))+

E ∧ (E′ ×G′ Y′)+

tr(fY′ )

OO

// E ∧ (E×G Y)+

tr(fY)

OO

E ∧ Rε∗(E
′ ×et

G′ ε
∗(Y′))+

tr(fY′ )

OO

// E ∧ Rε∗(E×et
G ε∗(Y))+)

tr(fY)

OO

commutes in the motivic stable homotopy category, HSptmot,E when G is special (G is not necessarily special,
respectively). (In this case we may require ` is a prime 6= char(k) so that E is Z(`)-local.)

In case E denotes a commutative ring spectrum in Sptet which is `-complete for some prime ` and E ∧ X+ is
dualizable in Sptet,E , the same conclusions hold in the corresponding étale stable homotopy category HSptet,E .

Proof. For each fixed representation V of G, let ξV (ηV) denote the vector bundles on B̃ chosen as in (6.2.14)

( (6.2.16), respectively). Let ξ′
V

(η′
V

) denote the pull-back of these bundles to B̃′. Since ξV ⊕ ηV is trivial, so is

ξ′
V ⊕ η′V. Now the required property follows readily in view of this observation and the definition of the transfer
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as in Definition 6.5, in view of the cartesian square:

(7.0.1) E′ ×G′ (Y′ ×X)
//

πY′

��

E×G (Y ×X)

πY

��
E′ ×G′ Y′

//
E×G Y.

The main observation here is that the diagrams in (6.2.12) through (6.2.26) for Ẽ′×G Y map to the corresponding

diagrams for Ẽ ×G Y making the resulting diagrams commute, since all the transfers are constructed from the
pre-transfer trG(f)′. �

Remark 7.2. Taking different choices for p′ and Y′ provides many examples where the last Proposition applies.
For example, let B′ → B denote a map from another smooth quasi-projective scheme that is also connected, let
E′ = E×

B
B′ and let π′Y : E′ ×G (Y × X) → E′ ×G Y denote the induced map. (In particular, B′ could be given by

E/H ∼= E ×G G/H for a closed subgroup H so that E/H is connected.) Moreover, the above proposition readily
provides the following key multiplicative property of the transfer.

Proposition 7.3. (Multiplicative property) (i) Assume X is a smooth quasi-projective variety over k or an un-
pointed simplicial presheaf on Sm/S provided with a G-action, so that ΣTX+ is a dualizable in Sptmot. Let H
denote a linear algebraic group and let G = H × H with i = ∆ = the diagonal imbedding of H in G = H × H. Let
p : E → B denote an H-torsor and let πY : E×

H
X → B denote the induced map as in Theorem 1.1(a), (b) or (c).

Then the diagram

ΣTE×H (Y ×X)+

d //
ΣT(E× E) ×

H×H
((Y ×X)× (Y ×X))+

id∧q∧id //
ΣT(E× E) ×

H×H
(Y × (Y ×X))+

ΣTE×H Y+

tr(fY)

OO

d //
ΣT(E×H Y)+ ∧ (E×H Y)+

id∧tr(fY)

OO

commutes in the motivic stable homotopy category, when H is special. Here d denotes the diagonal map induced by
the diagonal map Y × X → (Y × X) × (Y × X) and q denotes the map induced by the projection Y × X → Y. In
case H is not necessarily special, one obtains a corresponding commutative diagram which is obtained by applying
Rε∗ to the corresponding terms in the above diagram after the presheaves Y, Y × X and (Y × X) × (Y × X) have
been replaced by their pull-back as sheaves to the étale site and the quotients are taken on the étale site.

(ii) In case E is a commutative ring spectrum in Sptmot with E ∧ X+ dualizable in Sptmot,E and X as in (i),
then the square

E ∧ E×H (Y ×X)+

d // E ∧ (E× E) ×
H×H

((Y ×X)× (Y ×X))+

id∧q∧id // E ∧ (E× E) ×
H×H

(Y × (Y ×X))+

E ∧ E×H Y+

tr(fY)

OO

d // E ∧ (E×H Y)+ ∧ (E×H Y)+

id∧tr(fY)

OO

also commutes in the motivic stable homotopy category, HSptmot,E , , when H is special. (Here we may also require
that ` is a prime, 6= char(k) so that E is Z(`)-local.) In case H is not necessarily special, one obtains a corresponding
commutative diagram with all the terms there replaced as in (i). In case E denotes a commutative ring spectrum
in Sptet which is `-complete for some prime ` 6= char(k), and E ∧ X+ is dualizable in Sptet,E , the corresponding
square commutes in the étale stable homotopy category HSptet,E .

Proof. We apply Proposition 7.1 with the following choices:

(i) for G, we take H×H, for G′ we take the diagonal H in H×H,
(ii) for p (p′) we take p× p : E× E→ B× B (the given p : E→ B, respectively),
(iii) for Y we take Y×Y provided with the obvious action of H×H and for Y′ we take Y provided with the given

action of H.

Then we obtain the cartesian square as in (7.0.1) and the map in the corresponding top row is given by

E×H (Y ×X)→ (E× E) ×
H×H

(Y × (Y ×X)).
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This factors as E ×H (Y × X)
d→(E × E) ×

H×H
((Y × X) × (Y × X))

id×q×id→ (E × E) ×
H×H

(Y × (Y × X)). Therefore,

Proposition 7.1 applies. �

Definition 7.4. (Weak module spectra over commutative ring spectra) Let A denote a commutative ring spectrum
in Sptmot (Sptet). Then a spectrum M ∈ Sptmot (Sptet) is a weak-module spectrum over A if M is equipped with
a pairing µ : M ∧A→ M that is homotopy associative.

Corollary 7.5. (Multiplicative property of transfer in generalized cohomology theories) Let h∗,• denote a generalized
cohomology theory defined for all smooth schemes of finite type over k with respect to a motivic ring spectrum A.
Let H denote a linear algebraic group. Let πY : E×H (Y×X)→ E×H Y (πY : Rε∗(E×H (Y×X)→ Rε∗(E×H Y))
denote the (obvious) map induced by the structure map X→ Spec k when H is special (H is not necessarily special)
as in Proposition 7.3.

(i) Assume X is a smooth quasi-projective variety over k or an unpointed simplicial presheaf on Sm/S provided
with a H-action, so that ΣTX+ is a dualizable in Sptmot. Then

tr(fY)∗(π∗Y(α).β) = α.tr(fY)∗(β), α ∈ h∗,•(E×H Y), β ∈ h∗,•(E×H (Y ×X))

(α ∈ h∗,•(Rε∗(E×H Y)), β ∈ h∗,•(Rε∗(E×H (Y ×X))))

when H is special (otherwise, respectively). Here tr(fY)∗ (π∗Y) denotes the map induced on generalized cohomology
by the map tr(fY) (πY, respectively). In particular, π∗Y is split injective if tr(fY)∗(1) = tr(fY)∗(π∗Y(1)) is a unit,
where 1 ∈ h0,0(E×H Y) (1 ∈ h∗,•(Rε∗(E×H Y))) is the unit of the graded ring h∗,•(E×H Y) (h∗,•(Rε∗(E×H Y)),
respectively).

(ii) Assume that X is a smooth quasi-projective variety over k or an unpointed simplicial presheaf on Sm/S
provided with a H-action and that A is a commutative ring spectrum in Sptmot with A∧X+ dualizable in Sptmot,A.

Suppose M is a motivic spectrum that is a weak-module spectrum over the commutative motivic ring spectrum
A. Then

tr(fY)∗(π∗Y(α).β) = α.tr(fY)∗(β), α ∈ h∗,•(E×H Y,M), β ∈ h∗,•(E×H (Y ×X)),A),

(α ∈ h∗,•(Rε∗(E×H Y),M), β ∈ h∗,•(Rε∗(E×H (Y ×X)),A))

when H is special (otherwise, respectively). Here tr(fY)∗ (π∗Y) denotes the map induced on generalized cohomology
by the map tr(fY) (πY, respectively). In particular,

π∗Y : h∗,•(E×HY,M)→ h∗,•(E×H(Y×X),M) (π∗Y : h∗,•(Rε∗(E×HY),M)→ h∗,•(Rε∗(E×H(Y×X),M)) is split injective

when H is special (in general, respectively) if tr(fY)∗(1) = tr(fY)∗(π∗Y(1)) is a unit, where 1 ∈ h0,0(E ×H Y,A)
(1 ∈ h0,0(Rε∗(E×H Y),A)) is the unit of the graded ring h∗,•(E×H Y,A) (h∗,•(Rε∗(E×H Y),A), respectively).

(iii) Assume that A is a commutative ring spectrum in Sptet, ` is a prime 6= char(k) so that A is `-complete,
with A ∧ X+ dualizable in Sptet,A, and that M is a weak module spectrum over A. Then the same conclusions as
in (ii) hold.

Proof. The proof of both statements follow by applying the cohomology theory h∗,• to all terms in the commutative
diagram in Proposition 7.3. We will provide details only for the case H is special, as the general case follows similarly.
In the proof of (ii), one needs to start with h∗,•(E×HY,M) and h∗,•(E×H(Y×X),M) and supplement the arguments

for (i) with the module property h∗,•(E×H Y,M)⊗ h∗,•(E×H (Y×X),A)
π∗Y⊗id→ h∗,•(E×H (Y×X),M)⊗ h∗,•(E×H

(Y×X),A)→ h∗,•(E×H (Y×X),M) and h∗,•(E×H Y,M)⊗ h∗,•(E×H Y,A)→ h∗(E×H Y,M). This provides us
with the commutative diagram:
(7.0.2)

h∗,•(E×H Y,M)⊗ h∗,•(E×H (Y ×X),A)
id⊗tr(fY)∗ //

π∗Y⊗id
��

h∗,•(E×H Y,M)⊗ h∗(E×H Y,A)

d∗

��
h∗,•(E×H (Y ×X),M)⊗ h∗,•(E×H (Y ×X)A)

//
h∗,•(E×H (Y ×X),M)

tr(fY)∗ //
h∗,•(E×H Y,M)

Since the multiplicative property is the key to obtaining splittings in the motivic stable homotopy category (see
Theorem 1.5), we will provide details on how one deduces commutativity of the above diagram. The commutativity
of the above diagram follows from the commutativity of a large diagram which we break up into three squares as
follows. RHom denotes the derived external Hom in the Sptmot,A.
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(7.0.3) RHom(E×H Y,M) ∧ RHom(E×H (Y ×X),A)
//

id∧tr(fY)∗

��

RHom((E× E)H×H(Y × (Y ×X)),M ∧A)

id∧tr(fY)∗

��
RHom(E×H Y,M) ∧ RHom(E×H Y,A)

//
RHom((E×H Y)+ ∧ (E×H Y)+,M ∧A)

RHom((E× E)H×H(Y × (Y ×X)),M ∧A)

id∧tr(fY)∗

��

d∗◦(π∗Y∧id)//
RHom(E×H (Y ×X),M ∧A)

tr(fY)∗

��
RHom((E×H Y)+ ∧ (E×H Y)+,M ∧A)

d∗ //
RHom(E×H Y,M ∧A)

RHom(E×H (Y ×X),M ∧A)

tr(fY)∗

��

µ //
RHom(E×H (Y ×X),M)

tr(fY)∗

��
RHom(E×H Y,M ∧A)

µ //
RHom(E×H Y,M)

The commutativity of the first square is clear from the observation that the transfer tr(fY) is a stable map. The
commutativity of the second square is essentially the multiplicative property proved in Proposition 7.3. The map
µ in the third square is the map induced by the pairing M ∧ A → M. The commutativity of this square again
follows readily from the observation that tr(fY) is a stable map. The commutativity of the square in (7.0.2) results
by composing the appropriate maps in the first square followed by the second and then the third square. More
precisely, one can see that the composition of the maps in the top rows of the three squares followed by the right
vertical map in the last square equals tr(fY)∗ ◦ d∗ ◦ (π∗Y ⊗ id) which is the composition of the left vertical map and
the bottom row in the square (7.0.2). Similarly the composition of the left vertical map in the first square and the
maps in the bottom rows of the three squares above equals d∗ ◦ (id⊗ tr(fY)∗) which is the composition of the top
row and the right vertical map in (7.0.2).

The last statement in (ii) follows by taking β = 1 = π∗Y(1) ∈ h0,0(E ×H (Y × X),A). The statement in (iii)
follows from an entirely similar argument in the étale case. �

Next, we proceed to discuss the hypotheses needed to ensure splittings for slice completed generalized motivic
cohomology theories. Recall that we have a standing assumption that B is connected. In this context, we will
assume that Y is a geometrically connected smooth scheme of finite type over k . We already observed in 6.1.3 that
when B denotes a finite degree approximation, BGgm,m, (with m sufficiently large) of the classifying spaces for a
linear algebraic group G, it has k-rational points and are therefore geometrically connected smooth schemes of finite
type over k: see [EGA, Tome 24, Chapitre 4, Corollaire 4.5.13]. Furthermore, we will assume that the generalized
cohomology theory h∗,•( ,A) (defined with respect to the commutative motivic ring spectrum A) is such that the
restriction map
(7.0.4)
h0,0(E×G Y,A)→ h0,0(Yk ′ ,A), for G special and h0,0(Rε∗(E×G Y),A)→ h0,0(Rε∗(Yk ′),A), for G not special

is an isomorphism, where Spec k ′ → B is any point of B.

Proposition 7.6. Under the above assumption, tr(fY)∗(1) = tr(fY)∗(π∗Y(1)) = (idYk′ ∧ τX(f))∗(1) where τX(f) is
the trace defined in Definition 6.1 (iii) and π∗Y : h∗,•(E×G Y,A)→ h∗,•(E×G (Y×X),A), tr(fY)∗ : h∗,•(E×G (Y×
X),A) → h∗,•(E ×G Y,A) denote the maps in the case G is special and the maps π∗Y : h∗,•(Rε∗(E ×G Y),A) →
h∗,•(Rε∗(E×G (Y×X)),A), tr(fY)∗ : h∗,•(Rε∗(E×G (Y×X)),A)→ h∗,•(Rε∗(E×G Y),A) in case G is not special.

Proof. We discuss explicitly only the case where char(k) = 0. In positive characteristics p, one needs to replace the
sphere spectrum ΣT everywhere by the corresponding sphere spectrum with the prime p inverted, or completed
away from p as discussed in the introduction.

The first equality is clear since π∗Y is a ring homomorphism and therefore, π∗Y(1) = 1. Next we will consider
the case when G is special. The naturality with respect to base-change as in Proposition (7.1), together with the
assumption that the restriction h0,0(E×G Y)→ h0,0(Yk ′) is an isomorphism shows that tr(fY)∗π∗Y(1) is the same
for E×G Y as well as for Yk ′ . When G is special and the scheme B = Spec k , tr(f) : ΣT(Spec k)+ → ΣTX+, (which
also identifies with the corresponding pre-transfer tr(f)′) so that for Yk ′ , tr(fYk′ ) = idYk′ ∧ tr(f)′. Therefore, it is
clear that πY ◦ tr(fYk′ ) = idYk′ ∧ τX(f) as defined in Definition 6.1 (iii). Therefore, the equality tr(fY)∗(π∗Y(1)) =
(idYk′ ∧ τX(f))∗(1) follows in this case.
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Next, we consider the case when G is not necessarily special. In this case, we first recall that the transfer when
B = Spec k is a map, ΣTRε∗(Spec k)+

∼= ΣTRε∗(a ◦ ε∗)(Spec k)+ → ΣTRε∗(a ◦ ε∗)(X))+. Then we observe the
diagram (see the discussion in Step 0: Case 2 in section 6.2):

h0,0(Yk ′ ,A)

π∗Y
k′ //

h0,0(Yk ′ ×X,A)
tr(fY)∗ //

h0,0(Yk ′ ,A)

h0,0(Rε∗(a ◦ ε∗)(Yk ′),A)
Rε∗(a◦ε∗)π∗Y//

∼=

OO

h0,0(Rε∗((a ◦ ε∗)(Yk ′ ×X)),A)
Rε∗(a◦ε∗)tr(fY)∗//

OO

h0,0(Rε∗(a ◦ ε∗)(Yk ′),A)

∼=

OO

h0,0(Rε∗(E×G Y),A)
π∗Y//

∼=

OO

h0,0(Rε∗(E×et
G (a ◦ ε∗)(Y ×X)),A)

tr(fY)∗ //

OO

h0,0(Rε∗(E×G Y),A).

∼=

OO

The squares that make up the top two rows commute, because the pre-transfer tr(fY) is a stable map and by the
adjunction between ε∗ and Rε∗. Therefore, it follows that the composition of the maps in the middle row identifies
with the composition of maps in the top row: it is an isomorphism if the composition of the maps in the top row
is an isomorphism. Observe that the top row corresponds to the composition of πYk′ and the pre-transfer, which is
idYk′ ∧τX(f), as defined in Definition 6.1(iv). The vertical maps in the bottom squares correspond to the restriction
to the k′-rational point of B. The bottom right square commutes by Proposition (7.1), and the commutativity of
the bottom left square is clear. The isomorphisms

h0,0(Rε∗(E×G Y),A)
∼=→h0,0(Rε∗(Yk ′),A) ∼= h0,0(Rε∗(a ◦ ε∗)(Yk ′),A),

now show that the composition of the maps in the bottom row, that is, tr(fY)∗ ◦π∗Y identifies with the composition
of the maps in the top row, which is (idYk′ ∧ τX(f))∗. This completes the proof. �

Proposition 7.7. The hypotheses in (7.0.4) are satisfied when h∗,• denotes motivic cohomology with respect to
any commutative ring R, and when B is any connected smooth scheme, or is a filtered colimit of such schemes.

Proof. Since Y is assumed to be geometrically connected and B is connected, it follows that E×G Y is connected.
Observe that now, h0,0 = H0,0

M , which denotes motivic cohomology in degree 0 and weight 0. The motivic complex
R(0) is the constant sheaf associated to the ring R. Therefore, since E ×G Y is connected, the restriction map
h0,0(E×GY)→ h0.0(Yk ′) is an isomorphism for any point Spec k ′ → B. It follows that the first hypothesis in (7.0.4)
is always satisfied. Since R(0) is the constant sheaf on the Nisnevich site,

h0,0(Rε∗(X )) = H0(Hom(RΓ(Spec k,Rε∗(X ))),R) = H0(Hom(RΓ(ε∗(Spec k),X )),R)

for any smooth scheme X , and the last term on the right provides the connected components of the scheme X
computed on the big étale site. Therefore, the conclusion follows. �

7.1. Proof of Theorem 1.1. We will first clarify the terminology used. Recall that BGgm,m (EGgm,m) denotes
the m-th degree approximation to the classifying space of the group G (its principal G-bundle, respectively) as
in [Tot99], [MV99] or [CJ19]. If X is a scheme with G-action, one can form the scheme EGgm,m ×G X, which is
called the Borel construction. In case G is not special, the torsor EGgm,m → BGgm,m is locally trivial only in the
étale topology, so that in this case we replace the Borel construction above by Rε∗(EGgm,m ×et

G X) as discussed in
section 6.2, Step 0: Case 2. However, we will continue to denote Rε∗(EGgm,m ×et

G X) by EGgm,m ×G X mainly for
the sake of simplicity of notation.

The first statement in the Theorem is the compatibility of the transfer with various degrees of finite dimensional
approximations to the classifying space: this has been discussed in Step 2 in the construction of the transfer. The
second statement in the Theorem is the multiplicative property proven in Corollary 7.5. This implies the property
(iii), and the first statement in (iv) follows from the naturality property for the transfer with respect to base-change
as in Proposition 7.1. (See Remark 7.2.) That the transfer is compatible with change of base fields follows from
the corresponding property for the pre-transfer: see Proposition 5.9. The second statement in (ii) follows from the
fact that the transfer is defined using the pre-transfer (see Examples 2.9) which is a stable map that involves no
degree or weight shifts.

Next we will sketch an argument to prove Theorem 1.1(v). Let {BGgm,m(1)|m}, {BGgm,m(2)|m} denote two
sequences of finite degree approximations to the classifying space of the given group G satisfying certain basic
assumptions as in [MV99], [Tot99] or [CJ19, Definition 4.1]. Let {EGgm,m(1),EGgm,m(2)|m} denote the corre-
sponding universal G-bundles: the main requirements here are that both these have free actions by G and that as
m→∞, these are A1-acyclic.
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Then a key observation is that {EGgm,m(1) × EGgm,m(2)|m} with the diagonal action of the group G also
satisfies the same hypotheses so that their quotient by the diagonal action of G will also define approximations
to the classifying space of the G. Therefore, after replacing {BGgm,m(1)|m} with {EGgm,m(1) × EGgm,m(2)|m},
we may assume that one has a direct system of smooth surjective maps {EGgm,m(1) → EGgm,m(2)|m}. Now it
is straightforward to verify that all the constructions discussed in the above steps for the transfer are compatible
with the maps {EGgm,m(1) → EGgm,m(2)|m}. Therefore, one obtains a direct system of homotopy commutative
diagrams, m ≥ 1:

ΣT(EGgm,m(1)×G X)+
//
ΣT(EGgm,m(2)×G X)+

ΣTBGgm,m(1)+

tr(f)m(1)

OO

//
ΣTBGgm,m(2)+.

tr(f)m(2)

OO

Finally, one may also verify that the maps {EGgm,m(1) ×G X → EGgm,m(2) ×G X|m} and {BGgm,m(1) →
BGgm,m(2)|m} induce isomorphisms on generalized motivic cohomology as one takes the lim

m→∞
: see, for exam-

ple [MV99, §4, Proposition 2.6]. These complete the proof of (v) when Y = Spec k: the case when Y is a general
smooth G-scheme is similar.

The construction of the transfer in the étale framework is entirely similar, though care has to be taken to ensure
that affine spaces are contractible in this framework, which accounts partly for the hypothesis in (vi) and in (3.0.3).
Property (vii) is proved in the next section. �

8. Computing traces: compatibility of the transfer with realizations

Assume the situation as in Theorem 1.1. Then, very often the main application of the transfer is to prove that
π∗Y is a split injection in generalized cohomology, i.e. one needs to verify that tr(fY)∗(π∗Y(1)) is a unit. In order
to verify that tr(fY)∗(π∗Y(1)) is a unit, one may adopt the following strategy. First we will show that the transfer
constructed above is compatible with passage to a simpler situation, for example passage from over a given base
field to its algebraic or separable closure and/or passage to a suitable realization functor: we will often use the

étale realization. Then, often, h0,0(B) ' h0,0
real(B) where h∗,•real(B) denotes the corresponding generalized cohomology

of the realization. Therefore, it will suffice to show that tr(fY)∗real(π
∗
Y(1)) is a unit: here tr(fY)real denotes the

corresponding transfer on the realization. We devote all of this section to a detailed discussion of this technique.

As before we will assume the base scheme is the spectrum of a perfect field k satisfying the assumption (3.0.3).
k̄ will denote a fixed separable closure of k and ` is a prime different from char(k). Accordingly S = Spec k and
S̄ = Spec k̄ . We first recall the maps of topoi (from (3.3.15)):

(8.0.1) ε∗ : Spt/Smot → Spt/Set, ε̄
∗ : Spt/S̄mot → Spt/S̄et, and η∗ : Spt/Set → Spt/S̄et.

Let θ and φE denote the functors considered in Proposition 5.9. We let E ∈ Sptmot denote a commutative
ring spectrum which is `-complete for a prime ` 6= char(k). Throughout the following discussion, we will take
Y = Spec k.

Proposition 8.1. (Commutativity of the pre-transfer with étale realization) Assume the above situation. Then
denoting by tr(f)′ the pre-transfer (as in (2.2.2)), ε∗(tr(f)′) ' tr(ε∗(f)′) and ε̄∗(tr(f)′) ' tr(ε̄∗(f)′) when applied to
the dualizable objects of the form E ∧X+ appearing in Propositions 5.1(i) and (ii), 5.4(iv), and Theorem 5.7. The
same conclusion holds for ε∗ and ε̄∗ replaced by η∗ or any of the two functors θ and φE .

Proof. Implicitly assumed in the proof is the fact that the above maps of topoi all send dualizable objects to du-
alizable objects. This is already proved in Proposition 5.9. Moreover, as pointed out earlier, [DP84, 2.2 Theorem
and 2.4 Corollary] seems to provide a quick proof of the assertion above, so that at least in principle, the results
in this proposition should be deducible from op. cit. Nevertheless, it seems best to provide a proof of Proposi-
tion 8.1, at least for ε∗: the proof for the other functors will be similar. First observe that there is a natural map
ε∗RHom(K,L)→ RHom(ε∗(K), ε∗(L)) for any two objects K,L ∈ Sptmot,E . If one takes L = E , RHom(K,L) will
denote D(K). Similarly RHom(ε∗(K), ε∗(L)) will then denote D(ε∗(K)).

Now the proof of the assertion for the pre-transfer follows from the commutativity of the following diagrams
where the composition of maps in the top row (bottom row) is ε∗(tr(fY)′) (tr(ε∗(f)′), respectively) with the smash
products denoting their derived versions and K = E ∧X+ as in the Proposition:
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ε∗(E)

id

��

//
ε∗(K ∧E DK)

∼= //
ε∗(K) ∧ε∗(E) ε

∗(DK)

tt
ε∗(E)

//
ε∗(K) ∧ε∗(E) D(ε∗(K))

ε∗(K) ∧ε∗(E) ε
∗(DK)

��

(id∧ε∗(E)ε
∗(f)∧ε∗(E)ε

∗(f))◦(id∧ε∗(E)∆)◦τ
//
ε∗(DK) ∧ε∗(E) ε

∗(K) ∧ε∗(E) ε
∗(K)

ε∗(e)∧ε∗(E)id//

��

ε∗(E) ∧ε∗(E) ε
∗(K)

id

��
ε∗(K) ∧ε∗(E) D(ε∗(K))

(id∧ε∗(E)ε
∗(f)∧ε∗(E)ε

∗(f))◦(id∧ε∗(E)∆)◦τ
//
D(ε∗(K)) ∧ε∗(E) ε

∗(K) ∧ε∗(E) ε
∗(K)

e∧ε∗(E)id//
ε∗(E) ∧ε∗(E) ε

∗(K)

The isomorphism ε∗(K ∧E DK)
∼=→ε∗(K) ∧ε∗(E) ε

∗(DK) in the top row may be obtained as follows. First one observes
that the colimits involved in the definition of the functor ε∗ is a sifted colimit, so that ε∗ commutes with products.
Clearly ε∗ also commutes with colimits, so that it commutes with the smash products of spectra. �

Corollary 8.2. Assume that the group G is special and that f : X → X is a G-equivariant map and let πY :
E×G (Y×X)→ E×G Y denote any one of the three cases considered in Theorem 1.1. Then ε∗(tr(fY)) ' tr(ε∗(fY)),
where tr(f) denotes the transfer defined with respect to a motivic ring spectrum E that is `-complete for a prime
` 6= char(k).

Proof. Proposition 8.1 proves the corresponding statement for the pre-transfer when Y = Spec k. Now the corre-
sponding result holds for a general Y, since the corresponding pre-transfer tr(fY)′ = idY+

∧ tr(f)′. Now a detailed
examination of the various steps in the construction of the transfer show that they all pull-back to define the
corresponding construction on the étale site. (In fact, tr(fY) as in Definition 6.5 is defined by first taking suitable
fiber-wise join, id ∧G trG(fY)′, where trG(fY)′ is the G-equivariant pre-transfer.) �

Assume that the generalized cohomology theory h∗,• is defined with respect to the commutative motivic ring
spectrum E which is `-complete for some prime ` 6= char(k). Then the spectrum η∗(ε∗(E)) defines the corresponding
generalized étale cohomology theory which will be denoted h̄∗,•et . Observe that the natural map E → Rε∗Rη∗η

∗ε∗(E)
induces a natural map h∗,• → h̄∗,•et . We will once again adopt the notations from Theorem 1.1 in the following
discussion.

Proposition 8.3. Assume in addition to the assumption (7.0.4), that the above map h0,0(Yk ′) → h̄0,0
et (Yk̄ ) is

also an isomorphism, where k̄ denotes an algebraic closure of k ′. Then, under the above isomorphism tr(fYk′ )
∗(1)

identifies with tr(η∗ε∗(fYk̄
))∗(1). If follows that, π∗Y : h∗,•(E×G Y)→ h∗,•(E×G (Y×X)) is a split mono-morphism

if tr(η∗ε∗(fYk̄
))∗(1) is a unit.

Proof. We first observe that the transfer tr(fYk′ ) = idYk′,+ ∧ tr(f)′, where tr(f)′ is the pre-transfer associated to
X. Therefore, Proposition 8.1 proves the first statement. The remaining statement then follows readily from the
first. �

Remark 8.4. Here we are implicitly assuming that the spectra in Sptθ∗ε∗(T),et identify with the usual spectra where

the suspension is with respect to the simplicial S1. This is discussed in Remark 3.18.

Examples 8.5. (1) One may take the generalized cohomology h∗,• to be mod-` motivic cohomology for some
prime different from char(k). Then the conclusion above says that the induced map in mod−` motivic
cohomology π∗Y : h∗,•(E ×G Y,Z/`) → h∗,•(E ×G (Y × X),Z/`) is a split mono-morphism if the class
tr(ε∗(f))∗(1) is a unit in H0

et(Yk ′ , µ`).
(2) In this example, we assume that the transfer is compatible with Betti realization. Take k = C. One may

take the generalized cohomology h∗,• to be integral (or rational) motivic cohomology. Then the induced map
π∗Y : h∗,•(E ×G Y) → h∗,•(E ×G (Y × X)) is a split monomorphism if the class tr(ζ∗(f))∗(1) is a unit in
Z ∼= H0(Yk ′ ,Z), where ζ∗ now denotes the Betti realization functor. (Observe that it is enough to know
that the pre-transfer is compatible with Betti realization. This has been worked out by G. Bainbridge in
[Bain18].)
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9. Transfer and stable splittings in the Motivic Stable Homotopy category

We will restrict to the transfers considered in Definition 6.5. Therefore, we may assume G is a linear algebraic
group over k, p : E→ B is a G-torsor over a perfect field k, and πY : E×G (X× Y)→ E×G Y is one of the three
maps considered in Theorem 1.1(a), (b) or (c). Recall that X, Y denote unpointed simplicial presheaves (defined
on Sm/S) provided with actions by G and so that X is dualizable in the motivic homotopy category. f : X→ X is
a G-equivariant map.

In order to obtain splittings in the stable homotopy category, there are essentially two distinct techniques we
pursue here making use of the transfer as a stable map. Both of these apply to actions of all linear algebraic
groups, irrespective of whether they are special, but the only draw-back of the first method is that one needs to
be able to compute the relevant traces in the Grothendieck-Witt ring of the base field (or the Grothendieck-Witt
ring with the characteristic of the base field inverted). As such, currently this works only when the scheme X as
in Theorem 1.1 is of the form G/N(T), where G is any split reductive group and N(T) denotes the normalizer of
a split maximal torus in G. The second method has the advantage that it is enough to compute the traces after
taking étale realizations. The only draw-back of this method is that it only works for slice-completed generalized
motivic cohomology theories and certain connectivity assumptions need to be imposed on the schemes considered
as in (7.0.4).

9.1. Splittings via the Grothendieck-Witt group: Proof of Theorem 1.5(1). In this approach we show
that the class τ∗X(1) is a unit in the Grothendieck-Witt group (or the Grothendieck-Witt group with characteristic of
the base field inverted) and use that to obtain splittings directly, first at the level of the pre-transfer. This method
is rather limited to those schemes X for which it is possible to compute τ∗X(1) in the Grothendieck-Witt group. Such
a computation is carried out in [JP-1, Theorem 1.6] where X = G/N(T), for a connected split reductive group G
over a perfect field and N(T) the normalizer of a split maximal torus in G. Therefore, at present this technique only
applies to the above case. In the discussion below, we will only consider the case where char(k) = 0. In positive
characteristics p, the same discussion applies by replacing the sphere spectra everywhere by the corresponding
sphere spectra with the prime p inverted, or completed away from p as discussed in the introduction.

Case 1: Here we will assume the group G is special. Since the group G is assumed to be special, for each fixed

integer m ≥ 1, the map p : E → B is a Zariski locally trivial principal G-bundle and let p̃ : Ẽ → B̃ denote the

induced map where B̃ is the affine replacement. Let {Ui|i} denote a Zariski open cover of B over which the map p
trivializes so that πY|Ui

= Ui × (Y ×X)→ Ui ×Y.

Let tr : ΣT(Ẽ ×G Y)+ → ΣT(Ẽ ×G (Y × X))+ denote the transfer defined in Definition 6.2.26. Then one may
observe that tr |Ui

: ΣT(Ui × Y)+ → ΣT(Ui × Y)+ ∧ ΣTX+ is just idΣT(Ui×Y)+
∧ tr′X, where tr′X denotes the

pre-transfer considered in Definition 6.1(ii). Therefore, if τ∗X(1) is a unit in the Grothendieck-Witt group (or in
the Grothendieck-Witt group with the characteristic of the base field inverted), (where τX is the trace defined in

Definition 6.1(iv)), then the composition, ΣTπY,+ ◦ trX, where π̃Y is the projection Ẽ×G (Y×X)→ Ẽ×G Y, will
be homotopic to the identity over each Ui.

Now let h∗,• denote a generalized motivic cohomology theory defined with respect to a motivic spectrum. Then

the splitting above, over Ui of the map πY|Ui
shows, using a Mayer-Vietoris argument and observing that each B̃

is quasi-compact, that the composite map tr∗ ◦π∗Y : h∗,•(Ẽ×
G

Y)
π∗Y→h∗,•(Ẽ×

G
(Y×X))

tr∗→h∗,•(Ẽ×
G

Y) is an isomorphism.

When we vary B over finite dimensional approximations {BGgm,m|m}, the same therefore holds on taking the
colimit of the BGgm,m over m as m → ∞, as we have shown the transfer maps are all compatible as m varies:
see Theorem 1.1(i). (Here the colimit of the BGgm,m will pullout of the generalized cohomology spectrum as a
homotopy inverse limit, and then one uses the usual lim1-exact sequence to draw the desired conclusion.)

Case 2: Here we will let G denote any linear algebraic group. We first recall from Definition 6.1(iii), that
the G-equivariant pre-transfer is given by tr(idY)′G : Y+ ∧ SG → Y+ ∧ SG ∧ X+ to be idY+

∧ tr(id)′G, with

tr(id)G : SG → SG ∧ X+ is the G-equivariant pre-transfer in Definition 6.1(ii). Moreover, the composition of the
above pre-transfer and the projection Y+SG ∧X+ → Y+ ∧ SG is idY+ ∧ τX. In view of the assumption that τ∗X(1)

is a unit in the Grothendieck-Witt ring of k , this composite map is a weak-equivalence mapping Y+ ∧ SG to itself.
Therefore, it follows that the composite map

Ẽ×etG (aε∗(Y+ ∧ SG))
Ẽ×et

G (aε∗trG(id′Y))−→ Ẽ×et
G (aε∗(Y+ ∧ SG ∧X+))

Ẽ×et
G (aε∗(pr))−→ Ẽ×et

G (aε∗(Y+ ∧ SG))

is also a weak-equivalence. Therefore, it remains a weak-equivalence on applying the right derived functor Rε∗.
Finally we apply a generalized motivic cohomology theory h∗,• to the above maps to observe that the composite
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map

h∗,•(Ẽ×et
G (aε∗(Y+ ∧ SG)))

π∗Y−→h∗,•(Ẽ×et
G (aε∗(Y+ ∧ SG ∧X+)))

tr(id∗Y)−→ h∗,•(Ẽ×et
G (aε∗(Y+ ∧ SG)))

is an isomorphism.

Proof of Theorem 1.5(1): clearly, this follows readily in view of the above discussion.

9.2. Splittings on slice completed generalized cohomology theories: Proof of Theorem 1.5(2). One
key observation here is that the map tr(fY) being a stable map, it induces a map of the stable slice spectral sequences
for h∗,•(E×G (X×Y),M) and h∗,•(E×G Y,M). (One may observe that the slice spectral sequences converge only
conditionally, in general: the convergence issues will be discussed below.) Next we will show, under the hypotheses
of the theorem, that multiplication by tr(fY)∗(π∗Y(1)) induces a splitting of the corresponding E2-terms of the
above spectral sequences. For this, recall that the multiplicative properties of the slice filtration, verified in [Pel08],
shows that these E2-terms are modules over the motivic cohomology and that, in fact these E2-terms are defined
by motivic spectra (that is, the slices) that are module spectra over the motivic Eilenberg-Maclane spectrum.

Therefore, under these assumptions, the multiplicative property of the transfer as in Corollary 7.5 with A there
denoting the motivic Eilenberg-Maclane spectrum H(Z) and the module spectrum M there denoting the module
spectra defining the above E2-terms, shows that tr(fY)∗ ◦ π∗Y induces a map of the E2-terms of the above motivic
Atiyah-Hirzebruch spectral sequences. That is, we reduce to proving tr(fY)∗ ◦ π∗Y induces an isomorphism on the
motivic cohomology of E×G Y, modulo the convergence issues of the spectral sequence.

Next we make use of Propositions 7.6, 7.7 which reduces the situation to the case where the group G is trivial,
that is, it suffices to prove the splittings for the pre-transfer, under the assumption that idYk′,+ ∧ τX(f)∗(1) is a

unit in the motivic cohomology H0,0(Yk ′). A key assumption needed here is the one in (7.0.4). Observe that this
reduction holds irrespective of whether the group is special or not. Next we invoke Propositions 8.1 and 8.3 which
reduce to proving the splitting for the pre-transfer at the level of the étale realizations with the base field separably
closed.

Next we discuss convergence issues of the spectral sequence. Since the map tr(fY)∗ ◦π∗Y induces an isomorphism
at the E2-terms, and therefore at all the Er-terms for r ≥ 2, it follows that it induces an isomorphism of the inverse
systems {Er|r} and therefore an isomorphism of the E∞-terms and the derived E∞-terms. (See [Board98, (5.1)]
for a description of the derived E∞-terms. It is shown in [CE, Chapter XV, section 2] that both the E∞-terms and
the derived E∞-terms are determined by the sequence Er, r ≥ 2.)

The next observation is that for every fixed integer n and m, on replacing the spectrum M by s≤nM, the
corresponding slice spectral sequence for the schemes Y and Ym converge strongly: this is clear since the Eu,v

1 -
terms will vanish for all u > n and also for u < 0. (See [Board98, Theorem 7.1].) That Eu,v

1 = 0 for u < 0 or u > n
follows from the identification of the E1-terms of the spectral sequence in terms of the slices of the S1-spectrum
forming the 0-th term in the associated Ω-P1-spectrum: see [Lev08, Proof of Theorem 11.3.3]. Moreover, the
abutment of the spectral sequence are the homotopy groups of the slice-completion of the S1-spectrum forming the
corresponding 0-th term. Next, let {Ym|m} denote either one of the following ind-schemes: Ym = E×G Y, for all
m ≥ 1 or Ym = EGgm,m×G Y, m ≥ 1. Then, it follows therefore that for each fixed integer m and n, the composite
map

tr(fY)∗ ◦ π∗Y : HNis(Ym, s≤nM)→ HNis(Ym, s≤nM)

is a weak-equivalence, where HNis denotes the hypercohomology spectrum on the Nisnevich site.

Therefore, from the compatibility of the transfer as m varies as proven in (6.2.25), it follows that the composite
map

tr(fY)∗ ◦ π∗Y : holim
∞←m

holim
∞←n

HNis(Ym, s≤nM)→ holim
∞←m

holim
∞←n

HNis(Ym, s≤nM)

is a weak-equivalence.

Next we discuss proof of Theorem 1.5(2). First observe that the above discussion already proves the first
statement in 2(i). Then the second statement there follows by observing that ΣTX+ is dualizable in Sptmot as
observed in Proposition 5.4. We already proved in Propositions 8.1 and 8.3 that the transfer is compatible with
étale realizations. In fact, one may take the commutative motivic ring spectrum E to be the motivic Eilenberg-
Maclane spectrum H(Z/`ν). Then Theorem 5.7 shows E ∧X+ is dualizable in SptE and Propositions 8.1 and 8.3
show that the pre-transfer is compatible with étale realizations. The last statement in Theorem 1.5(2)(i) follows
from these observations and the first statement there already proven.

In order to prove the variant in Theorem 1.5(2)(ii)(a), it suffices to observe that the slices of the module spectrum
M are now module spectra over ΣT[p−1] and that the zero-th slice of ΣT[p−1] = H(Z[p−1]). Then essentially the
same arguments as above apply, along with Theorem 5.7 to complete the proof of statement (a). In order to prove
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the variant (b), it suffices to observe that the slices of the module spectrum M are module spectra over ΣT,(`)

(ΣT ̂̀) and that the zero-th slice of ΣT,(`) is H(Z(`)) (the zero-th slice of ΣT ̂̀ is HẐ̀), respectively). In fact, both
of these statements follow readily by identifying the slice tower with the coniveau tower as in [Lev08]. The étale
variant, (iii) follows first by observing that Postnikov sections of the module spectrum M are module spectra over

the `-completed S1-sphere spectrum Σ̂S1,`. �

Proofs of Corollaries 1.6 and 1.7. The slice completed generalized motivic cohomology of any smooth scheme
with respect to the motivic spectrum representing Algebraic K-theory, identifies with Algebraic K-theory itself.
This proves the first statement in Corollary 1.6. The second statement in Corollary 1.6 now follows from the
following observations.

First we observe the weak-equivalence for any motivic spectrum E : sp(E)∧ΣTM(`ν) ' sp(E ∧ΣT
M(`ν)), where

M(`ν) is defined as the homotopy cofiber of the map ΣT
`ν→ΣT, and where sp denotes the p-th slice. This follows from

the identification of the slices, with the slices obtained from the coniveau tower as in [Lev08, Theorem 9.0.3]. Let K
denote the motivic spectrum representing algebraic K-theory. Next we recall (see [Lev08, section 11.3]) that the slice
s0(K) = H(Z) = the motivic Eilenberg-Maclane spectrum and that the p-th slice sp(K) = H(Z(p)[2p]), which is the
corresponding shifted motivic Eilenberg-Maclane spectrum. Therefore, each sp(K) has the structure of a module
spectrum over the commutative ring spectrum H(Z). In view of this, one may also observe that the natural map
sp(K)∧ΣT

M(`ν)→ sp(K)∧HZH(Z/`ν) = H(Z/`ν(p)[2p]) is a weak-equivalence, where H(Z/`ν) denotes the mod−`ν
motivic Eilenberg-Maclane spectrum. Therefore, the slices sp(K∧ΣT

M(`ν)) ' sp(K)∧ΣT
M(`ν) have the structure

of weak-module spectra over the motivic Eilenberg-Maclane spectrum H(Z/`ν). i.e. The hypotheses of the second
statement in Theorem 1.5(2)(i) are met, thereby completing the proof of the second statement in Corollary 1.6.
(One may also want to observe that the spectrum K∧ΣT

M(`ν) has cohomological descent on the Nisnevich site of
smooth schemes of finite type over k so that the generalized cohomology h(X,K ∧ΣT

M(`ν)) ' K(X) ∧ΣT
M(`ν)

for any smooth scheme X of finite type over k.)

The first statement in Corollary 1.7 follows readily from the statements in Theorem 1.5, Corollary 1.6, Propo-
sition 8.3 and the following observation: the Euler characteristic of G/N(T) (when G and N(T) are defined over
a separably closed field) in étale cohomology with Z/`ν-coefficients (` different from the characteristic) is 1. The
second statement there is proven similarly using Betti realization in the place of étale realization: see Exam-
ples 8.5(2). �.

10. Appendix: Spanier-Whitehead duality and Thom-spaces in the motivic and étale setting

The main goal of this section is to collect together various basic results on Thom spaces of algebraic vector
bundles and relate them to Spanier-Whitehead duality in the both the motivic and étale framework. Throughout
the following discussion we will let S denote a Noetherian affine scheme and will restrict to smooth schemes of
finite type over S.

10.1. Basic results on Thom-spaces. We begin with the following basic observation on vector bundles over
affine schemes.

Proposition 10.1. (i) Let X denote any affine scheme. Then any vector bundle E on X has a complement, i.e.
there exists another vector bundle E⊥ so that E ⊕ E⊥ is a trivial vector bundle.

(ii) Assume X is again an affine scheme. Then, if E and F are two vector bundles on X, then they represent
the same class in the Grothendieck group K0(X) if and only if they are stably isomorphic, i.e. isomorphic after the
addition of some trivial vector bundles.

(iii) Let X denote a quasi-projective scheme, i.e. locally closed in some projective space over an affine base

scheme S. Then there exists an affine scheme X̃ together with a surjective map X̃→ X so that X̃ is an affine-space
bundle over X. In particular, the map X̃→ X is an A1-equivalence.

Proof. (i) is clear from the fact that vector bundles on affine schemes correspond to projective modules over the
corresponding coordinate ring. (ii) is discussed in [Voev03, Lemma 2.9]. (iii) is the construction discussed in
[Joun73, Lemme 1.5] and often referred to as the Jouanolou trick. �

We will next summarize some well-known facts about Thom-spaces in the stable A1-homotopy category, Spt/Smot.
If α is a vector bundle over a smooth scheme X over the scheme S, then one needs to define the Thom-space of α
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to be the following canonical homotopy pushout:

(10.1.1) E(α)−X

��

//
E(α)

��
S

//
Th(α)

where E(α) denotes the total space of the vector bundle α. Since E(α) and E(α) − X map to X and then to S,
Th(α) maps to S. The map S→ Th(α) provides a section to the induced map Th(α)→ S, so that Th(α) is pointed
over S and hence is an object in Spt/Smot. (We may often assume that injective maps are cofibrations, in which
case the map in the top row is a cofibration, and therefore, it suffices to take the ordinary pushout, in the place of
the homotopy pushout.)

When we view E(α) and E(α)−X as sheaves on the big étale site, the corresponding pushout of sheaves on the
big étale site will be denoted Th(α)et.

Proposition 10.2. Let α denote a vector bundle over the scheme X. (i) Viewing ProjX(α ⊕ 1) = P(α ⊕ ε1) and
ProjX(α) = P(α) as simplicial presheaves over the base scheme S and taking the quotient presheaf, P(α⊕ε1)/P(α) '
Th(α) where P(β) denotes the projective space bundle associated to a vector bundle β and ε1 denotes a trivial bundle
of rank 1. Viewing P(α ⊕ ε1) and P(α) as simplicial presheaves over X and taking the quotient presheaf over X,
P(α⊕ ε1)/XP(α) ' S(α⊕ ε1), a sphere bundle over X. (This may be called the “one-point compactification of the
vector bundle α”.) The obvious projection S(α⊕ ε1)→ X has a section s that sends a point in X to the point at ∞
in the fiber over that point. Now S(α⊕ ε1)/s(X) ∼= Th(α).

(ii) If X→ Y is a closed immersion of smooth schemes with N denoting the corresponding normal bundle, then
Th(N ) ' X/X−Y.

(iii) Let g : S′ → S denote a map of smooth schemes and let g∗(α) denote the induced vector bundle on X′ = X×
S

S′.

Then g induces a map Th(g∗(α))→ Th(α) compatible with the given map g : S′ → S. Moreover, the induced map
Th(g∗(α))→ Th(α) is natural in g and α.

Proof. The proof of the first statement appears in (10.2.2) and the proof of the second statement appears in [MV99].
Since Th(g∗(α)) is defined by the canonical homotopy pushout

E(g∗(α))−X′

��

//
E(g∗(α))

��
S′

//
Th(g∗(α))

where X′ = X×
S

S′, the existence of the map Th(g∗(α)) → Th(α) is clear. That this is natural in S and α is clear

from the from the fact that the canonical homotopy pushout is natural in the arguments defining it. �

Notation 10.3. When we view P(α) and P(α ⊕ 1) as sheaves on the big étale site the corresponding quotient
P(α⊕ 1)et/P(α)et will be denoted S(α⊕ 1)et.

10.2. The fiber-wise join of simplicial presheaves (spectra) fibering over another simplicial presheaf
(spectrum). Given maps of simplicial presheaves Y → X and Z→ X, the fiber-wise join Y ∗X Z is the simplicial
presheaf defined as the (canonical) homotopy pushout

(10.2.1) Y×
X

Z
//

��

Z

��
Y

//
Y ∗X Z

One may readily verify that if X, Y and Z are spectra in any of the above categories of spectra, then one may apply
the above construction to the constituent spaces of the above spectra, which will show that the above construction
extends to spectra. We elaborate a bit on the above construction and its application to Thom-spaces. First we
show that the fiber-wise join indeed does what it is supposed to do.

Lemma 10.4. Assume X, Y and Z are simplicial presheaves as above. Then (i) there is an induced map Y∗XZ→ X.
(ii) If Yx,Zx denote the fibers over x ∈ X, (Y ∗X Z)x ' S1 ∧ (Yx ∧ Zx). (iii). Therefore, if X denotes the
simplicial presheaf represented by a smooth scheme, and Y, Z are pointed simplicial presheaves over X, Y ∗X Z '
(S1 ×X) ∧X (Y ∧X Z) ' Y ∧X ((S1 ×X) ∧X Z).
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Proof. This is a well-known result. See for example, [CS03, Lemma 2.1]. �

Next let X denote a smooth scheme and let α denote a vector bundle over X. We may then consider ProjX(α)
and ProjX(α ⊕ 1) as the corresponding projective-space bundles over X. Here 1 denotes the trivial vector bundle
of rank 1. We we will view these as simplicial presheaves over the simplicial presheaf represented by X. Next
let S(α ⊕ 1) denote the simplicial presheaf quotient of the obvious monomorphism: ProjX(α) → ProjX(α ⊕ 1) of
simplicial presheaves fibered over X. (Note: the S stands for sphere-bundle.) To be precise, this is defined by the
homotopy pushout square (since the map ProjX(α) → ProjX(α ⊕ 1) is a monomorphism and we use the injective
model structure on simplicial presheaves, one may simply take a pushout square here ):

(10.2.2) ProjX(α)
//

��

ProjX(α⊕ 1)

��
X

s //
S(α⊕ 1)

where s : X→ S(α⊕1) denotes the section sending a point in X to the point at∞ in the fiber of S(α⊕1). Since the
Thom-space Th(α) identifies with the homotopy cofiber ProjX(α ⊕ 1)/ProjX(α), this is also defined by a similar
homotopy pushout, but with X replaced by the base scheme S. i.e. Th(α) may also be obtained by taking the
homotopy pushout S(α⊕ 1)/s(X).

If β is another vector bundle over X, we let
o

β → X denote the associated bundle β − 0 → X. Now with
o

β+ =
o

β t X, one obtains (S1 × X) ∧X
o

β+ ' (βt
o

β

X) ∼= S(β ⊕ 1). The last ∼= is an isomorphism as simplicial

presheaves over X while the ' is a weak-equivalence of such simplicial presheaves. The last isomorphism may be
seen by working locally on X, so that β is trivial. The ' follows from the observation that the fibers of β are

acyclic so that (S1 ×X) ∧X
o

β+ ' (βt
o

β

X) as simplicial presheaves over X.

Lemma 10.5. Let α and β denote two vector bundles over the scheme X. Then we obtain the identifications:

(i) S(α ⊕ 1) ∗X
o

β+ ' S(α ⊕ 1) ∧X S(β ⊕ 1) ' S(α ⊕ β ⊕ 1) where
o

β denotes β − 0 → X, the associated sphere
bundle.

(ii) The map S(α⊕ β ⊕ 1)→ X has a section s sending each point of X to the point at ∞ in the fiber over that
point. Then the quotient S(α⊕ β ⊕ 1)/s(X) = Th(α⊕ β) which is the Thom-space of the vector bundle α⊕ β.

Proof. Since (ii) is rather straight-forward, we will discuss only (i). In view of the weak-equivalences above between

(S1×X)∧X
o

β+ and S(β⊕1), and the observation that ∧X is a homotopy pushout of simplicial presheaves over X (in

the injective model structure), it follows that S(α⊕1)∗X
o

β+ ' S(α⊕1)∧X ((S1×X)∧X
o

β+) ' S(α⊕1)∧X S(β⊕1).
Since the last fibers over X, one may work locally on X and show readily that it identifies with S(α⊕ β ⊕ 1). �

Lemma 10.6. Let B = Spec k denote the base field. Let G denote a linear algebraic group defined over B and
acting on the simplicial presheaves E and X over the base scheme B. Assume that E is in fact a smooth scheme of
finite type over B so that the (geometric) quotient E/G exists and is in fact a scheme of finite type over B. Let P
denote a pointed simplicial presheaf in PSh/B together with a G-action that leaves the base point of P fixed. Then
E×G (P ∧X+) ∼= PE/G ∧E/G (E×G X+), where PE/G = P×G E.

Proof. The proof is skipped as one may readily verify the above conclusions. �

10.3. Motivic Atiyah duality. The rest of this section will be devoted to summarizing a version of Atiyah-
duality (see [At61]) that applies to the motivic and also the étale context, so that for any smooth projective scheme
X over a smooth affine base scheme, there exists a vector bundle over the scheme X (which we call the virtual
normal bundle) whose Thom-space is a Spanier-Whitehead dual of the suspension spectrum ΣTX in the category
Spt/Smot. The idea of the proof may be summarized as follows: using the evaluation and co-evaluation maps
eX and cX defined below, and with the T-suspension spectrum of a smooth projective scheme X denoting X (the
T-suspension spectrum of the Thom-space of a suitable vector bundle over X considered below replacing the dual
D(X ) ), it suffices to show that the conditions in Theorem 2.3(ii) are satisfied.

Under the assumption that the base scheme S satisfies the finiteness hypothesis as in (3.0.3), we may readily
observe that the pullback functors ε∗ : Spt/SNis → Spt/Set, ε̄

∗ : Spt/S̄Nis → Spt/S̄et, and η∗ : Spt/Set → Spt/S̄et
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considered in (5.0.19) as well as the functors θ and φE (discussed in the paragraph below (5.0.19)) send Thom-
spaces in the framework of the source, to Thom-spaces in the framework of the target, are compatible with the
smash-products and internal Homs in these categories and also send maps that are homotopic to the identity to
maps that are homotopic to the identity. Therefore, as shown in the proof of Proposition 5.4(v), the discussion
below carries over from the framework of Spt/Smot to all of the other frameworks (at least after inverting A1 in
all these frameworks). i.e. The construction of a Spanier-Whitehead dual from the Thom-space of a vector bundle
worked out below in the motivic framework carries over to the étale setting after smashing with an `-complete
spectrum, ` being prime to the characteristic.

Over algebraically closed fields of arbitrary characteristic, there is already a somewhat different construction
valid in the étale setting and making strong of use of étale tubular neighborhoods. This appears in [J86] and [J87].

Definition 10.7. (The diagonal map.) Next we consider the following diagonal map. Let α, β denote two vector
bundles on the scheme X. Then there is a diagonal map Th(α ⊕ β) → Th(α) ∧ Th(β). This map is induced by
the map E(α ⊕ β) → E(α) × E(β) lying over the diagonal map X → X × X. In this case, one may verify that
E(α⊕ β)− {0} maps to (E(α)− {0})× E(β) ∪ E(α)× (E(β)− {0}). Taking α to be a zero-dimensional bundle,
one obtains the diagonal map

(10.3.1) ∆ : Th(β)→ X+ ∧ Th(β).

One may interpret the above diagonal map in terms of the associated disk and sphere bundles as follows:

∆′ : Th(β) = P(β ⊕ ε1)/P(β)→ P(β ⊕ ε1)+ ∧ P(β ⊕ ε1)/P(β) = (P(β ⊕ ε1)× P(β ⊕ ε1))/P(β ⊕ ε1)× P(β)

Now one composes with the projection P(β ⊕ ε1)→ X to define the diagonal map in (10.3.1).

10.4. Basic framework: the projective case. Assume next that X and Y are smooth projective schemes with
X provided with a closed immersion into Y over the smooth affine scheme S. Y will usually denote a projective
space over S, but we denote it by Y for simplicity of notation. Then denoting τX, τY and N the tangent bundle to
X, the tangent bundle to Y and the normal bundle associated to the imbedding of X in Y, one obtains the short
exact sequence

(10.4.1) 0→ τX → τY|X → N → 0.

Let πY : Ỹ → Y denote the affine replacement provided by Jouanolou’s construction. Then the following are proven
in [Voev03, Proposition 2.7 through Theorem 2.11]:

(1) There exists a vector bundle V on Y so that π∗Y(V)⊕π∗Y(τY) is stably isomorphic to a trivial vector bundle.
So we will assume that π∗Y(V)⊕ π∗Y(τY)⊕ εm ∼= εn for some m and n. We will replace V by V⊕ εm so that
π∗Y(V)⊕ π∗Y(τY) is the trivial bundle εn.

(2) There exists a collapse map V : Tn → Th(V). In fact, what Voevodsky shows (see [Voev03, Lemma 2.10

and Theorem 2.11]) is that one considers the Segre-imbedding of Pd × Pd in Pd2+2d and then shows that

Td2+2d identifies with a certain quotient sheaf of Pd2+2d by a certain hyperplane H. Therefore, the n above
will be d2 + 2d.)

One may observe that π∗Y(N ⊕V|X)⊕ π∗Y(τX) is also stably trivial. If π∗Y(N ⊕V|X)⊕ π∗Y(τX)⊕ εm ∼= εN for some
m and N , we will replace V by V ⊕ εm and we will make the following definition.

Definition 10.8. (Virtual normal bundle in the projective case, the Voevodsky collapse and the corresponding
co-evaluation map) We let νX = N ⊕ V|X and call it the virtual normal bundle to X in Y. Taking Y = X, we see

that νY has the property that π∗Y(νY) is a complement to π∗Y(τY) in some trivial bundle over Ỹ.

Clearly Th(νX) ' V/V − X where X is imbedded in V by the composite imbedding X → Y
0−section→ E(V).

Therefore, one obtains a collapse map Th(V) = V/V − Y → V/V − X ' Th(νX). Composing with the collapse
V : Tn → Th(V) one obtains the collapse VX : Tn → Th(νX). Composing with the diagonal map ∆ (considered
above), one obtains a map c : Tn → X+ ∧ Th(νX). The main result that we need is that this map is indeed
a co-evaluation map in the sense of Theorem 2.3(ii), so that Σ−nT Th(νX) is indeed a Spanier-Whitehead dual of
ΣTX+. This follows from the following results whose proofs are only briefly sketched as they are rather well-known
by now. (See, for example, [Hu-Kr05]. )

Lemma 10.9. Let α denote a vector bundle on Y. Then the map πY induces a weak-equivalence Th(α) '
Th(π∗Y(α)).
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Proposition 10.10. (i) Assume that X and Y are smooth projective S-schemes with X provided with a closed

immersion into Y. Denoting by πY : Ỹ → Y , an affine replacement provided by Jouanolou’s device (as above), the
vector bundles π∗Y(νY ⊕ τY) and π∗Y(νX ⊕ τX) are trivial, so that there are collapse maps

d̂Y : Th(νY) ∧ ΣTY+ ' Th(π∗Y(νY)) ∧ ΣTY+ → Σm
T̃Y+ ' Σm

TY+,

d̂X : Th(νX) ∧ ΣTX+ ' Th(π∗Y(νX)) ∧ ΣTX+ → Th(π∗Y(νX ⊕ τX)) = Σm
TX̃+ ' Σm

TX+, and

d̂YX : Th(νY) ∧ ΣTX+ ' Th(π∗Y(νY)) ∧ ΣTX+ → Σm
TX̃+ ' Σm

TX+.

(ii) The relative normal bundle to the composite imbedding X → Y → E(νY) is N ⊕ νY |X = N ⊕ V|X = νX if

N denotes the normal bundle for the immersion X → Y. Therefore, one also obtains a collapse: gYX : Th(νY) →
Th(νX)

In this situation, we define the evaluation map

(10.4.2) eY : Σ−mT Th(νY) ∧ ΣTY+ → ΣT as Σ−m
T d̂Y composed with the collapse map ΣTY+ → ΣT.

Observe that the same definition applies to define an evaluation map for X:

(10.4.3) eX : Σ−mT Th(νX) ∧ ΣTX+ → ΣT

since νX = νY |X ⊕N . The evaluation map eYX : Σ−mT Th(νY) ∧ ΣTX+ → ΣTX+ is defined similarly. Observe that
one obtains the following commutative diagram in this case:

(10.4.4) Σ−mT Th(νY) ∧Y+

eY

��

Σ−mT Th(νY) ∧X+id∧i
oo Σ−mT gYX∧id//

eYX
��

Σ−mT Th(νX) ∧X+

eX

��
ΣT

id //
ΣT

id //
ΣT

Observe also that eY (eX, eYX) corresponds by adjunction to a map
(10.4.5)

dY : Σ−mT Th(νY)→ D(ΣTY+) (dX : Σ−m
T Th(νX)→ D(ΣTX+),dY

X : Σ−m
T Th(νY)→ D(ΣTY+), respectively.)

Next assume that the maps d = dY : Σ−mT Th(νY) → D(ΣTY+), d̃ : ΣTY+ → Σm
T(D(Th(νY))) (where d̃ is

obtained by taking the dual of d and then precomposing with obvious map ΣTY+ → DD(ΣTY+)) are weak-

equivalences and let d−1 : D(ΣTY+)→ Σ−m
T Th(νY), d̃−1 : ΣmTD(Th(νY))→ ΣTY+ denote a homotopy inverse for

d (d̃, respectively). Let κ : ΣTY+ = ΣTY+ → ΣT and κ̃ : ΣTTh(νY) → ΣT denote the obvious maps. Therefore,
taking duals, one obtains a map κ′ : ΣT → D(ΣTY+) ( κ̃′ : ΣT → D(Th(νY)), respectively). Composing with d−1

(d̃−1), one obtains maps:

c′Y : ΣT → Σ−mT Th(νY) and cY = ∆ ◦ c′Y : ΣT → ΣTY+ ∧ Σ−m
T Th(νY)(10.4.6)

We will see below in Theorem 10.14 that the above approach, suffices to define the co-evaluation map cY for any
projective smooth scheme Y.

Proposition 10.11. The composite map

Σ−mT Th(νY) ∧ ΣTY+
∆∧id→ ΣTY+ ∧ Σ−m

T Th(νY) ∧ ΣTY+
id∧eY→ ΣTY+ ∧ ΣT ' ΣTY+

is always homotopic to the map d′Y, i.e. irrespective of whether dY is a weak-equivalence. In case dY is also a
weak-equivalence, the composite map

ΣT ∧ ΣTY+
cY∧id→ ΣTY+ ∧ Σ−m

T Th(νY) ∧ ΣTY+
id∧d′Y→ ΣTY+ ∧ ΣTY+

is homotopic to the diagonal map.

Proof. The diagonal map ∆ may be viewed as the map (E(νY),E(νY)− Y )→ (Y ×E(νY), Y ×E(νY)− (Y × Y )),
sends (e, e′) 7→ ((p(e), e), (p(e′), e′)), where p : E(νY)→ Y is the obvious projection. The collapse map

d̂Y : Th(νY) ∧ ΣTY+ → Th(νY ⊕ τY) ' Σn
TY+

on the other hand identifies with the obvious map

(E(νY)× Y,E(νY)× Y − (Y × Y ))→ (E(νY)× Y,E(νY)× Y −∆(Y ))

where ∆(Y ) is Y imbedded diagonally in Y × Y .
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Therefore, it follows that any (ey, y) ∈ E(νY) × Y with ey in the fiber over y is sent by the composition of the
map ∆∧ id and the collapse d′Y to (y, y) ∈ Y+ ∧Y+. Therefore, (ey, y) (as above) is sent by (id ∧ e) ◦ (∆ ∧ id) to y
and (ey′ , y), with y 6= y′ is collapsed to the base point. This proves the first assertion and the proof of the second
is similar: recall that one needs dY to be a weak-equivalence for cY to be defined. �

Corollary 10.12. Assume that the variety Y is such that the map d : Σ−mT Th(νY) → D(ΣTY+) is a weak-
equivalence. Then the composition

ΣTY+ ' ΣT ∧ ΣTY+
c∧id→ ΣTY+ ∧ Σ−m

T Th(νY) ∧ ΣTY+
id∧e→ ∧ ΣTY+

is homotopic to the identity map.

Proof. This is clear, since the composite map appearing in the second statement in Proposition 10.11 is homotopic
to the diagonal map. �

Remark 10.13. The above corollary, therefore verifies the first condition in Theorem 2.3(ii) under the assumption
that the map d is a weak-equivalence. We skip the verification of the second condition there.

We next consider the following rather technical result which when applied suitably will prove that all smooth
projective varieties over any smooth affine variety as the base scheme are dualizable in the stable A1-motivic
homotopy category and the corresponding étale category.

Theorem 10.14. Recall the base scheme is a smooth affine Noetherian scheme S. Let Y denote any smooth
projective scheme over S so that ΣTY+ is dualizable in the stable A1-homotopy category Spt/S and so that the map
dY : Σ−mT Th(νY) → D(ΣTY+) in (10.4.5) is a weak-equivalence. Then for any smooth closed subscheme X of Y,

ΣTX+ is also dualizable in the same stable A1-homotopy category Spt/S. Moreover, the map dX : Σ−mT Th(νX)→
D(ΣTX+) is a weak-equivalence.

Proof. The first step in the proof is to define the co-evaluation map cX : ΣT → ΣTX+ ∧ Σ−m
T Th(νX). Observe

that X imbeds in Y and that therefore, one obtains the collapse map: gYX : Th(νY) → Th(νX). We let c′X : ΣT →
Σ−mT Th(νX) be defined as the composition

(10.4.7) Σ−mT gYX ◦ c′Y : ΣT → Σ−mT Th(νY)→ Σ−nT Th(νX).

We let cX : ΣT → ΣTX+∧Σ−m
T Th(νX) be defined as ∆X ◦c′X. The remainder of the proof is simply to show that

with the above definition of the co-evaluation map cX and the evaluation map eX : Σ−mT Th(νX) ∧ ΣTX+ → ΣT

defined in (10.4.3) satisfy the hypothesis in Theorem 2.3(ii) when X (D(X )) is replaced by ΣTX+ (Σ−mT Th(νX),
respectively). We skip the remaining details of a proof of this theorem as this is essentially proved in [Hu-Kr05,
Appendix]. One may find related results in [Ay] also. �

Theorem 10.15. Let Pn denote the n-dimensional projective space over the base S. Then ΣTPn+ is dualizable.

(i) If πY : P̃n → Pn is an affine replacement as in 10.1, and ν̃ = π∗Y(ν) is a complement to π∗Y(τPn) in a trivial

vector bundle, of rank m, then there is a map dP̃n : Σ−mT Th(ν̃)→ D(ΣTP̃n
+) which is a stable A1-equivalence.

(ii) Σ−mT Th(ν) is also a stable dual to ΣTPn+, where ν denotes the vector bundle denoted νY (for Y = Pn) in
Definition 10.8.

Proof. One may prove both statements in the theorem using ascending induction on n, the case n = 0 being
obviously true. �

Corollary 10.16. Any smooth projective scheme over the affine Noetherian base scheme S is dualizable in Spt/S.

Proof. Theorem 10.15 shows that any projective space over S satisfies the hypotheses on the scheme Y as in
Theorem 10.14. Therefore, Theorem 10.14 shows that every projective smooth scheme over S is dualizable in
Spt/Smot. �
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