HALL MAGNETIC RECONNECTION:
2D AND 3D RESULTS

J.D. Huba
Plasma Physics Division
Naval Research Laboratory
Washington, DC 20375

Magnetic Reconnection Workshop
Cambridge, England
August 9, 2004

with L.I. Rudakov, Berkeley Scholars, Inc., Beltsville, MD
Hall magnetic reconnection (dependence on)
 • Initial width of current layer
 • Guide field

3D results
 • ‘Reconnection wave’
 • Magnetic ‘flux ropes’

Results based on NRL 3D Hall MHD code VooDoo
Hall magnetic reconnection (dependence on)
 - Initial width of current layer
 - Guide field

3D results
 - ‘Reconnection wave’
 - Magnetic ‘flux ropes’

Results based on NRL 3D Hall MHD code VooDoo
Hall magnetic reconnection (dependence on)
 - Initial width of current layer
 - Guide field

3D results
 - ‘Reconnection wave’
 - Magnetic ‘flux ropes’

Results based on NRL 3D Hall MHD code VooDoo
- Ohm’s law (electrons frozen into magnetic field)
 \[\mathbf{E} + \mathbf{V}_e \times \mathbf{B}/c = 0 \]

- Current definition (assumes quasineutrality)
 \[\mathbf{J} = n_e (\mathbf{V}_i - \mathbf{V}_e) \Rightarrow \mathbf{V}_e = \mathbf{V}_i - \frac{1}{n_e} \mathbf{J} \]

- Electric field is written as
 \[\mathbf{E} = -\frac{1}{c} \mathbf{V}_i \times \mathbf{B} + \frac{1}{n_e c} \mathbf{J} \times \mathbf{B} \]

- Physically, the Hall term decouples ion and electron motion on ion inertial length scales: \(L \lesssim c/\omega_{pi} \)
Equilibrium configuration: \(B_y(x) = B_0 \tanh(x/L) \)

Four initial widths: \(L = 1, 5, 10, \text{ and } 20 \)
 All other parameters the same

Boundary conditions: zero-gradient \((\partial/\partial x = \partial/\partial y = 0) \)
 Steady state achieved
INITIAL PERTURBATION

Dependence on Current Layer Width

L20 animation
INITIAL/FINAL STATES

Dependence on Current Layer Width
Reconnected flux Φ is

$$\Phi(t) = \int_0^\infty B_x(0, y, t) \, dy = \int_0^{L_y/2} B_x(0, y, t) \, dy + \int_{L_y/2}^\infty B_x(0, y, t) \, dy$$

- First term is time independent in steady state.

- Final term is approximated as

$$\int_{L_y/2}^\infty B_x(0, y, t) \, dy \simeq \int_{t_A}^t B_x(0, L_y/2)V_y(0, L_y/2) \, dt = B_x(0, L_y/2)V_y(0, L_y/2)(t - t_A)$$

Reconnected flux rate $\partial \Phi / \partial t$ is

$$\frac{\partial \Phi(t)}{\partial t} \simeq B_x(0, L_y/2)V_y(0, L_y/2)$$
RECONNECTION RATE/ENERGIZATION TIME
Dependence on Current Layer Width
HALL MAGNETIC RECONNECTION

Dependence on Guide Field

Reconnection Rate/Kinetic Energy

Inflow/Outflow Velocities

![Graphs showing the relationship between reconnection rate, kinetic energy, inflow and outflow velocities with increasing guide field ratio.](image-url)
HALL MAGNETIC RECONNECTION

Dependence on Guide Field

- Reduction of inflow and outflow velocities (and hence reconnection rate) associated with additional $\mathbf{J} \times \mathbf{B}$ force from guide field.

\[
\frac{\partial \rho \mathbf{V}}{\partial t} = \mathbf{J} \times \mathbf{B}
\]

\[
\frac{\partial \rho V_x}{\partial t} = J_y B_z - J_z B_y \\
\hspace{1cm} \text{GF inflow}
\]

\[
\frac{\partial \rho V_y}{\partial t} = -J_x B_z + J_z B_x \\
\hspace{1cm} \text{GF outflow}
\]

- Guide field contribution opposes inflow and outflow velocities.
STRUCTURE OF ‘QUADRUPOLE FIELD’

Dependence on Guide Field

$B_{gf}/B_0 = 0$

$B_{gf}/B_0 = 5$
3D HALL RECONNECTION

Asymmetric propagation

‘Reconnection wave’

\[\omega = k_z \frac{c}{4\pi en} \frac{\partial B_0}{\partial y} \]
‘Flux rope’ formation
Asymmetric propagation persists
SUMMARY

Hall Magnetic Reconnection

- Final state of reversed field plasma system nearly independent of initial current layer width
 - Magnetic reconnection rate
 - Steady state values of Hall electric field and velocity
 - Energization time is dependent on initial width of plasma
 - Results independent of initial perturbation and grid size
 - Preliminary result: Reconnection rate independent of system size (similar to Shay et al. finding)

- Guide field
 - Reduces reconnection rate and energization (but not much)
 - Quadrupole field disappears

- Localized perturbation in 3D leads to
 - Asymmetric propagation of ‘reconnection wave’
 - ‘Flux rope’ formation with a guide field
HALL MHD EQUATIONS

- **Magnetic field evolution**
 \[
 \frac{\partial \mathbf{B}}{\partial t} = -c \nabla \times \mathbf{E} = \nabla \times [\mathbf{V} + \mathbf{V}_B \times \mathbf{B}] \quad \text{where} \quad \mathbf{V}_B = -\mathbf{J}/ne
 \]

- **Continuity**
 \[
 \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = 0
 \]

- **Momentum**
 \[
 \frac{\partial \rho \mathbf{V}}{\partial t} + \nabla \cdot \left[\rho \mathbf{V} \mathbf{V} + (P + B^2/8\pi) \mathbf{I} - \mathbf{B} \mathbf{B}/4\pi \right] = 0
 \]

- **Pressure**
 \[
 \frac{\partial P}{\partial t} + \nabla \cdot P \mathbf{V} = -\left(\gamma - 1\right)P \nabla \cdot \mathbf{V}
 \]

- **Energy**
 \[
 \frac{\partial \epsilon}{\partial t} + \nabla \cdot \left[\mathbf{V} (\epsilon + P + B^2/8\pi) - \mathbf{B}/4\pi (\mathbf{V} \cdot \mathbf{B}) \right]
 \]
 \[
 \nabla \cdot \left[\mathbf{V}_B (B^2/8\pi) - \mathbf{B}/4\pi (\mathbf{V}_B \cdot \mathbf{B}) \right] = 0
 \]

where \(\epsilon = \rho V^2/2 + 3P/2 + B^2/8\pi \)
Cell definition: Staggered mesh
Nonuniform Cartesian grid
Finite volume method
High order spatial interpolation (8th order)
Adams-Bashforth time stepping (2nd order)
Hydro flux calculation (distribution function method)
Flux limiter (partial donor cell method)
Electric field
 - Ideal MHD (distribution function method)
 - Hall MHD (upwind scheme, subcycling, smoothing)
Courant condition
Normalizations (upstream values of B and n):

$L \sim c/\omega_{pi0}; \ t \sim \Omega_{i0}t; \ V \sim V_{A0}; \ E \sim V_{A0}B_0$

Equilibrium configuration: $B_y(x) = B_0 \tanh(x/L)$

Density determined by pressure balance

Grid size: $L_x \simeq 70; \ L_y = 84$

Mesh: 90×160

Nonuniform grid in x direction: $\gtrsim 32$ grid points in current layer

Initial magnetic field perturbation (δB_x and δB_y)

Boundary conditions: zero-gradient ($\partial/\partial x = \partial/\partial y = 0$)

Steady state achieved