Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Dmitry Kramkov, Carnegie Mellon University

Based on a paper with Mihai Sirbu from Columbia University
The prices of non replicable derivative securities depend on many factors:

1. risk-preferences of the investor:
 (a) reference probability measure \mathbb{P}
 (b) utility function $U = U(x)$

2. current portfolio of the investor

3. trading volume in the derivatives

Goal: study the dependence of prices on trading volume.
There are $d + 1$ traded or liquid assets:

1. a savings account with zero interest rate.

2. d stocks. The price process S of the stocks is a semimartingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})$.

\mathcal{Q}: the family of local martingale measures for S.

Assumption (No Arbitrage)

$\mathcal{Q} \neq \emptyset$
Contingent claims

Consider a family of m non-traded or illiquid European contingent claims with

1. maturity T

2. payment functions $f = (f_i)_{1 \leq i \leq m}$.

Assumption No nonzero portfolio of f is replicable:

$$\langle q, f \rangle = \sum_{i=1}^{m} q_i f_i \text{ is replicable } \iff q = 0$$
Pricing problem

Question What is the (marginal) price \(p = (p_i)_{1 \leq i \leq m} \) of the contingent claims \(f \)?

Intuitive Definition The marginal price \(p \) for the contingent claims \(f \) is the threshold such that given the chance to buy or sell at \(p^{\text{trade}} \) an investor will

\[
\begin{align*}
\text{buy at } & p^{\text{trade}} < p & \text{sell at } & p^{\text{trade}} > p \\
\uparrow & \\
\text{do nothing at } & p^{\text{trade}} = p
\end{align*}
\]
Consider an investor with the portfolio \((x, q)\), whose preferences are modeled by a utility function \(U\):

1. \(U : (0, \infty) \rightarrow \mathbb{R}\), strictly increasing and strictly concave

2. The Inada conditions hold true:

\[
U'(0) = \infty \quad U'(\infty) = 0
\]
Problem of optimal investment

The goal of the investor is to maximize the expected utility of terminal wealth:

\[u(x, q) = \sup_{X \in \mathcal{X}(x)} \mathbb{E}[U(X_T + \langle q, f \rangle)], \]

where \(\mathcal{X}(x) \) is the set of strategies with initial wealth \(x \).

Order structure: a portfolio \((x, q)\) is better than a portfolio \((x', q')\) if \(u(x, q) \geq u(x', q') \).
Marginal utility based price

Definition
A marginal utility based price for the claims \(f \) given the portfolio \((x, q)\) is a vector \(p(x, q) \) such that
\[
 u(x, q) \geq u(x', q')
\]
for any pair \((x', q')\) satisfying
\[
 x + \langle q, p(x, q) \rangle = x' + \langle q', p(x, q) \rangle.
\]

In other words, given the portfolio \((x, q)\) the investor **will not trade** the options at \(p(x, q) \).
Computation of \(p(x) = p(x, 0) \)

Define the conjugate function

\[
V(y) = \max_{x > 0} [U(x) - xy], \quad y > 0.
\]

and consider the following **dual** optimization problem:

\[
v(y) = \inf_{Q \in \mathcal{Q}} \mathbb{E} \left[V \left(y \left(\frac{dQ}{dP} \right) \right) \right], \quad y > 0
\]

\(\mathcal{Q}(y) : \) the **minimal martingale measure** for \(y \).
Computation of $p(x) = p(x, 0)$

Mark Davis gave heuristic arguments to show that if y corresponds to x in the sense that

$$x = -v'(y) \iff y = u'(x)$$

then

$$p(x) = \mathbb{E}_{\mathcal{Q}(y)}[f].$$

The precise mathematical results are given in a joint paper with Julien Hugonnier and Walter Schachermayer.
Computation of $p(x) = p(x, 0)$

Theorem (Hugonnier,K.,Schachermayer) Let $x > 0$, $y = u'(x)$ and X be a non-negative wealth process. The following conditions are equivalent:

1. $p(x)$ is unique for any f such that

 \[|f| \leq K (1 + X_T) \quad \text{for some } K > 0 \]

2. $Q(y)$ exists and X is a martingale under $Q(y)$.

Moreover, in this case $p(x) = \mathbb{E}_{Q(y)}[f]$.
Trading problem

Assume that the investor can trade the claims at the initial time at the price p^{trade}.

Question What quantity $q = q(p^{\text{trade}})$ the investor should trade (buy or sell) at the price p^{trade}?

Using the marginal utility based prices $p(x, q)$ we can compute the optimal quantity from the “equilibrium” condition:

$$p^{\text{trade}} = p(x - qp^{\text{trade}}, q)$$
Sensitivity analysis of utility based prices

Main difficulty : \(p(x, q) \) is hard to compute except for the case \(q = 0 \).

Linear approximation for “small” \(\Delta x \) and \(q \):

\[
p(x + \Delta x, q) \approx p(x) + p'(x) \Delta x + D(x)q,
\]

where \(p'(x) \) is the derivative of \(p(x) \) and

\[
D^{ij}(x) = \frac{\partial p^i}{\partial q^j}(x, 0), \quad 1 \leq i, j \leq m.
\]
Quantitative questions

Question (Quantitative) How to compute $p'(x)$ and $D(x)$?

Closely related publications:

J. Kallsen (02) : formula for $D(x)$ for general semimartingale model but in a different framework of local utility maximization.

V. Henderson (02) : formula for $D(x)$ in the case of a Black-Scholes type model with basis risk and for power utility functions.
Qualitative questions

Question (Qualitative) When the following (desirable) properties hold true for any family of contingent claims f?

1. The marginal utility based price $p(x) = p(x, 0)$ does not depend (locally) on x, that is,

 $p'(x) = 0$

2. The sensitivity matrix $D(x)$ has full rank

3. The sensitivity matrix $D(x)$ is symmetric
Qualitative questions

4. The sensitivity matrix $D(x)$ is negative semi-definite:
 $$\langle q, D(x)q \rangle \leq 0.$$

5. **Stability** of the linear approximation: for any p^{trade} the linear approximation to the “equilibrium” equation:
 $$p^{trade} = p(x - qp^{trade}, q)$$

that is,
 $$p^{trade} \approx p(x) - p'(x)qp^{trade} + D(x)q$$

has the “correct” solution.
Risk-tolerance wealth process

Definition (K., Sirbu) A maximal wealth process $R(x)$ is called the risk-tolerance wealth process if

$$R_T(x) = -\frac{U'(\hat{X}_T(x))}{U''(\hat{X}_T(x))},$$

where $\hat{X}(x)$ is the optimal solution of

$$u(x) := u(x, 0) = \sup_{X \in \mathcal{X}(x)} \mathbb{E}[U(X_T)].$$
Risk-tolerance wealth process

Some properties of $R(x)$ (if it exists):

1. Initial value:

 $$R_0(x) = -\frac{u'(x)}{u''(x)}.$$

2. Derivative of optimal wealth strategy:

 $$\frac{R(x)}{R_0(x)} = X'(x) := \lim_{\Delta x \to 0} \frac{\widetilde{X}(x + \Delta x) - \widetilde{X}(x)}{\Delta x}.$$
Main qualitative result

Recall \(p(x + \Delta x, q) \approx p(x) + p'(x)\Delta x + D(x)q \).

Theorem (K., Sirbu) The following assertions are equivalent:

1. The risk-tolerance wealth process \(R(x) \) exists.
2. \(p'(x) = 0 \) for any \(f \).
3. \(D(x) \) is symmetric for any \(f \).
4. \(D(x) \) has full rank for any (non-replicable) \(f \).
5. \(D(x) \) is negative semidefinite for any \(f \).
Existence of $R(x)$

Recall that $Q(y)$ is the minimal martingale measure (the solution to the dual problem) for y.

Theorem (K., Sirbu) The following assertions are equivalent:

1. $R(x)$ exists.

2. $\frac{d}{dy} Q(y) = 0$ at $y = u'(x)$.

In particular, $R(x)$ exists for any $x > 0$ if and only if $Q(y)$ is the same for all y.
Second order stochastic dominance

Definition If ξ and η are nonnegative random variables, then $\xi \succeq_2 \eta$ if

$$\int_0^t \mathbb{P}(\xi \geq x) \, dx \geq \int_0^t \mathbb{P}(\eta \geq x) \, dx, \quad t \geq 0.$$

We have that $\xi \succeq_2 \eta$ iff

$$\mathbb{E}[W(\xi)] \leq \mathbb{E}[W(\eta)]$$

for any convex and decreasing function W.

Existence of $R(x)$

Case 1: a utility function U is arbitrary.

Theorem (K., Sirbu) The following assertions are equivalent:

1. $R(x)$ exists for any $x > 0$ and any utility function U.

2. There exists a unique $\hat{Q} \in Q$ such that

$$\frac{d\hat{Q}}{dP} \geq 2 \frac{dQ}{dP} \forall Q \in Q.$$
Existence of $R(x)$

Case 2: a financial model is arbitrary.

Theorem (K., Sirbu) The following assertions are equivalent:

1. $R(x)$ exists for any $x > 0$ and any financial model.

2. The utility function U is

 (a) the power utility: $U(x) = (x^\alpha - 1)/\alpha$, $\alpha < 1$, if $x \in (0, \infty)$;

 (b) the exponential utility: $U(x) = -\exp(-\gamma x)$, $\gamma > 0$, if $x \in (-\infty, \infty)$.

Computation of $D(x)$

We choose

$$R(x)/R_0(x) = X'(x)$$

as a numéraire and denote

$$f^R = f R_0(x)/R(x) : \text{discounted contingent claims}$$

$$X^R = X R_0(x)/R(x) : \text{discounted wealth processes}$$

$$\hat{Q}^R : \text{the martingale measure for } X^R :$$

$$\frac{d\hat{Q}^R}{d\hat{Q}} = \frac{R_T(x)}{R_0(x)}$$
Computation of \(D(x) \)

Consider the Kunita-Watanabe decomposition:

\[
P_t^R = \mathbb{E}_{Q^R} \left[f^R | \mathcal{F}_t \right] = M_t + N_t, \quad N_0 = 0,
\]

where

1. \(M \) is \(R(x)/R_0(x) \)-discounted wealth process.
 Interpretation: \textit{hedging process}.

2. \(N \) is a martingale under \(Q^R \) which is orthogonal to all \(R(x)/R_0(x) \)-discounted wealth processes.
 Interpretation: \textit{risk process}.
Computation of $D(x)$

Denote $a(x) := -xu''(x)/u'(x)$ the relative risk-aversion coefficient of

$$u(x) = \max_{X \in \mathcal{X}(x)} \mathbb{E}[U(X_T)].$$

Theorem (K., Sirbu) Assume that the risk-tolerance wealth process $R(x)$ exists. Then

$$D(x) = -\frac{a(x)}{x} \mathbb{E}_{QR} \left[N_T N'_T \right]$$
Computation of $D(x)$ in practice

Inputs:

1. \hat{Q}. *Already implemented!*

2. $R(x)/R_0(x)$. Recall that

$$\frac{R(x)}{R_0(x)} = \lim_{\Delta x \to 0} \frac{\hat{X}(x + \Delta x) - \hat{X}(x)}{\Delta x}.$$

Decide what to do with one penny!

3. Relative risk-aversion coefficient $\alpha(x)$. *Deduce from mean-variance preferences*. In any case, this is just a number!
Model with basis risk

Traded asset: \[dS_t = S_t (\mu dt + \sigma dW_t) \].

Non traded asset: \[d\tilde{S} = (\tilde{\mu} dt + \tilde{\sigma} d\tilde{W}_t) \]

Denote by \[\rho = \frac{d\tilde{W} dW}{dt} \] the correlation coefficient between \(S \) and \(\tilde{S} \). In practice, we want to chose \(S \) so that \[\rho \approx 1. \]
Model with basis risk

Consider contingent claims \(f = f(\tilde{S}) \) whose payoffs are determined by \(\tilde{S} \) (maybe path dependent).

To compute \(D(x) \) assume (as an example) the following choices:

1. \(\hat{Q} \) is a martingale measure for \(\tilde{S} \).

2. \(R(x)/R_0(x) = 1 \)

Then

\[
D_{ij}(x) = -\frac{\alpha(x)}{x}(1 - \rho^2)\text{Cov}_{\hat{Q}}(f_i, f_j).
\]
Assumptions

Assumption The financial model can be completed by an addition of a finite number of securities.

Assumption There are strictly positive constants c_1 and c_2 such that $c_1 < -\frac{xU''(x)}{U'(x)} < c_2$, $x > 0$.

Assumption There is a wealth process $X \geq 0$ such that $|f| \leq X_T$ and X is a square integrable martingale under the minimal martingale measure $\mathbb{Q}(y)$.
Summary

- For non replicable contingent claims prices depend on the trading volume.
- The following conditions are equivalent:
 - Approximate utility based prices have nice qualitative properties
 - Risk-tolerance wealth processes exist.
- We need to solve the mean-variance hedging problem, where the risk-tolerance wealth process plays the role of the numéraire.