Eulerian and Lagrangian Time Scales in Turbulence

Dhrubaditya Mitra1,2 Rahul Pandit1

1Département Cassiopée, Observatoire de la Côte d’Azur, Nice, France

2Department of Physics, Indian Institute of Science, Bangalore, India.

December 14, 2005
Homogeneous and isotropic turbulence

Flow behind a grid (Van dyke, 1982)
\(\log[S_p(r)] \) vs \(\log(r) \)

\[
\delta u_\parallel(r, t) \equiv [u(x + r, t) - u(x, t)] \cdot \frac{r}{r}
\]

\[
S_p(r) \equiv \langle [\delta u_\parallel(r, t)]^p \rangle \sim r^{\zeta_p}
\]
(The She-Leveque formula gives good agreement with experimental results.)

- $\zeta_p = p/3$ (Kolmogorov 1941)

- Experimental and Direct Numerical Simulations (DNS) show that the function ζ_p versus p is a nonlinear (convex) function of p. This phenomenon is called *Multiscaling*
Dynamic Scaling

\[F_2(r, t) \equiv \langle \delta u(r, 0) \delta u(r, t) \rangle \]

According to K41, \(F_p(r, t) \) decays in time with characteristic time scale \(\tau_p(r) \sim r^{z_p} \) with \(z_p = 2/3 \). (Simple dynamic scaling)

\(z_p \) is the dynamic scaling exponent. (Note the similarity with dynamic scaling as defined in critical point phenomenon)
Sweeping Effect

- Small eddies are advected by large eddies (swept) without any significant change to the small eddies (Taylor hypothesis).
- Also the non-linear term of the Navier–Stokes eqn. couples the high fourier modes to the smallest ones.
- Hence typical time and length scales are linearly related.
- Dynamic scaling exponent $z = 1$.
- The K41 prediction applies to the Lagrangian velocity.
Quasi-Lagrangian transformation

$$u^{ql}(r, t|r_0, t_0) = u[r + \rho(t|r_0, t_0)]$$

(Belinicher and L’vov 1988)

- Quasi-Lagrangian velocity is the Eulerian velocity relative to a fluid particle. This is expected to show no sweeping. The equal-time behaviour is similar to Eulerian and dynamic behaviour is similar to the Lagrangian velocities.
- The sweeping effect is removed by the quasi-Lagrangian transformation!
Questions

- How to remove the sweeping?
- Is the dynamic scaling for Lagrangian/quasi-Lagrangian velocities simple or is there dynamic multiscaling?
- Is there a model for which analytic calculations illustrating dynamic (multi)scaling is possible?
\(S^\theta_p(r) \equiv \langle [\delta \theta(r)]^p \rangle \sim r^{\zeta_p^\theta} \)

\(F_2^\theta(r) \equiv \langle \delta \theta(r, 0) \delta \theta(r, t) \rangle \)
Kraichnan model of passive scalar

\[\partial_t \theta + (u \cdot \nabla) \theta = \kappa \nabla^2 \theta + f^\theta, \]

Velocity obeys Navier–Stokes equation:

\[\partial_t u + (u \cdot \nabla) u = \nu \nabla^2 u + \nabla p/\rho + f/\rho \]

Velocity is random, Gaussian with co-variance

\[\langle u_i(x, t) u_j(x + \ell, t') \rangle = 2D_{ij}(\ell) \delta(t - t') \]

\[D_{ij}(\ell) = D_0 \delta_{ij} - \frac{1}{2} d_{ij}(\ell) \]

\[\begin{align*}
D_0 &\sim L^\xi \\
L &\to \infty \text{ and } \eta \to 0, \quad d_{ij} = D_1 \ell^\xi \left[(d - 1 + \xi) \delta_{ij} - \frac{\xi \ell_i \ell_j}{\ell^2} \right].
\end{align*} \]
Kraichnan model of passive scalar

\[\partial_t \theta + (u \cdot \nabla) \theta = \kappa \nabla^2 \theta + f^\theta, \]

Velocity obeys Navier–Stokes equation:

\[\partial_t u + (u \cdot \nabla) u = \nu \nabla^2 u + \nabla p/\rho + f/\rho \]

Velocity is random, Gaussian with co-variance

\[\langle u_i(x, t) u_j(x + \ell, t') \rangle = 2 D_{ij}(\ell) \delta(t - t') \]

\[D_{ij}(\ell) = D_0 \delta_{ij} - \frac{1}{2} d_{ij}(\ell) \]

\[D_0 \sim L^\xi \]

\[L \to \infty \text{ and } \eta \to 0, \quad d_{ij} = D_1 \ell^\xi \left[(d - 1 + \xi) \delta_{ij} - \xi \frac{\ell_i \ell_j}{\ell^2} \right]. \]
Equal-time statistics

- Due to the white-in-time nature of velocity we can get closed equation of motion for velocity moments.
- Multiscaling can be analytically (but perturbative) demonstrated.
- \(S_p(\ell) \sim \ell^{\xi_p} \).
- \(0 < \xi < 2 \).
- Structure functions have good limits, not correlation functions.
Dynamic structure functions

\[\delta \phi(x, t, r) \equiv \phi(x + r, t) - \phi(x, t) \]
\[\mathcal{F}_2^\phi(r, t) = \langle [\delta \phi(x, 0, r) \delta \phi(x, t, r)] \rangle \]
\[= 2C^\phi(0, t) - 2C^\phi(r, t) \]
\[C^\phi(r, t) \equiv \langle \phi(x + r, 0) \phi(x, t) \rangle \]

- \(t \) strictly positive.
- \(\phi \) can be either Eulerian or quasi–Lagrangian quantity.
Dynamic scaling

\[\partial_t C^\phi(r, t) = \langle \phi(x + r, 0) \partial_t [\phi(x, t)] \rangle \]
\[= -\langle \phi(0)(u \cdot \nabla)\theta \rangle + \kappa \nabla^2 \langle \phi(0)\phi \rangle + \langle \phi(0)f^\phi \rangle \]

\[\partial_t C^\theta(r, t) = D^0(L) \partial_{ij} C^\theta \sim L^\xi \partial_{ij} C^\theta; \]
\[\partial_t C^\hat{\theta}(r, t) = (D^0 \delta_{ij} - D_{ij}) \partial_{ij} C^\hat{\theta} \sim d_{ij}(r) \partial_{ij} C^\hat{\theta}. \]
\[C^\phi(r, t) \sim \exp[-t/\tau^\phi(r)] \]

\[\tau^\hat{\theta}(r, t) = r^{1-\xi}; \ \tau^\theta(r, t) = r^2 \]

In the limit of \(L \to \infty \), \(C^\theta(r, t) \) diverges for all \(r \).
\(z^{ql} = 2 - \xi \), a bridge relationship.
Dynamic scaling

$$\partial_t C^\phi(r, t) = \langle \phi(x + r, 0) \partial_t [\phi(x, t)] \rangle$$
$$= -\langle \phi(0) (u \cdot \nabla) \theta \rangle + \kappa \nabla^2 \langle \phi(0) \phi \rangle + \langle \phi(0) f \phi \rangle$$

$$\partial_t C^\theta(r, t) = D^0(L) \partial_{ii} C^\theta \sim L^\xi \partial_{ii} C^\theta;$$
$$\partial_t C^{\hat{\theta}}(r, t) = (D^0 \delta_{ij} - D_{ij}) \partial_{ij} C^{\hat{\theta}} \sim d_{ij}(r) \partial_{ij} C^{\hat{\theta}}.$$
$$C^\phi(r, t) \sim \exp[-t/\tau^\phi(r)]$$

$$\tau^{\hat{\theta}}(r, t) = r^{1-\xi}; \quad \tau^\theta(r, t) = r^2$$

In the limit of $L \to \infty$, $C^\theta(r, t)$ diverges for all r.
$z_{ql} = 2 - \xi$, a bridge relationship.
Dynamic scaling

\[
\partial_t C^\phi(r, t) = \langle \phi(x + r, 0) \partial_t [\phi(x, t)] \rangle
\]
\[
= -\langle \phi(0)(u \cdot \nabla)\theta \rangle + \kappa \nabla^2 \langle \phi(0)\phi \rangle + \langle \phi(0)f\phi \rangle
\]

\[
\partial_t C^\theta(r, t) = D^0(L)\partial_{ii} C^\theta \sim L^\xi \partial_{ii} C^\theta;
\]

\[
\partial_t C^{\hat{\theta}}(r, t) = (D^0\delta_{ij} - D_{ij}) \partial_{ij} C^{\hat{\theta}} \sim d_{ij}(r)\partial_{ij} C^{\hat{\theta}}.
\]

\[
C^\phi(r, t) \sim \exp[-t/\tau^\phi(r)]
\]

\[
\tau^{\hat{\theta}}(r, t) = r^{1-\xi}; \quad \tau^\theta(r, t) = r^2
\]

In the limit of \(L \to \infty \), \(C^\theta(r, t) \) diverges for all \(r \).
\(z^{ql} = 2 - \xi \), a bridge relationship.
Dynamics of Kraichnan model

- Generalization to higher order is possible but messy.
- Eulerian time-dependent structure functions have no good limit due to sweeping.
- Quasi-Lagrangian time-dependent structure functions remain finite, shows exponential decay in time, and simple dynamic scaling:
 \[z^{ql} = 2 - \xi \]
- Only analytical result for time-dependent structure functions in any form of turbulence.
Dynamics of fluid turbulence

- No known analytical attack.
- We perform 512^3 spectral DNS to calculate time-dependent structure function but to get well averaged result takes too long.
- An extension of the multifractal model provides illuminating bridge-relations.
Varieties of time-scales

\[T_{p,1}^I(r) \equiv \frac{1}{S_p(r)} \int_0^\infty F_p(r, t) \, dt \sim r^{\frac{z_p}{p}^I} \]

\[T_{p}^{D,2} \equiv \frac{1}{S_p(r)} \frac{\partial^2 F_p(r, t)}{\partial t^2} \sim r^{\frac{z_p}{p}^D} \]
Varieties of dynamic multiscaling

For Lagrangian or quasi-Lagrangian velocities:

\[z_{p,1}^L = 1 + [\zeta_{p-1} - \zeta_p], \]
\[z_{p,2}^D = 1 + [\zeta_p - \zeta_{p+2}] / 2. \]
For the full passive-scalar problem:

\[z_{p,2}^D = 1 - \frac{\zeta_2^u}{2} \]

\[z_{p,1}^I = 1 - \zeta_{-1}^u \]
Conclusion

- Kraichnan model shows simple dynamic scaling (although equal-time structure functions show multiscaling)
- Dynamic multiscaling implies "breakdown of simple dynamical scaling"
- A consequence of the multifractality.
- Bridge relations are numerically verified in GOY shell model.
- To numerically obtain bridge relations in Navier–Stokes equation we have to
 - Remove sweeping effect.
 - Calculate dynamic structure functions
 - Extract the dynamic scaling exponents
