A Hierarchy of Automatic ω-Words having a decidable MSO Theory

Vince Bárány

Mathematische Grundlagen der Informatik
RWTH Aachen

GAMES Annual Meeting – Isaac Newton Workshop
Cambridge, July 2006
An ω-word over Σ is a function $w : \mathbb{N} \rightarrow \Sigma$, alternatively represented by the word structure $(\mathbb{N}, <, \{w^{-1}(a)\}_{a \in \Sigma})$.

Theorem (cf. Rabinovich, Thomas ‘06)

The MSO theory of W is decidable iff there is a recursive factorization $w = w_0 \cdot w_1 \cdot \ldots \cdot w_n \cdot \ldots$ such that for every morphism ψ into a finite monoid M the contraction of w wrt. ψ and f:

$$w_{\psi} f = \psi(w_0) \cdot \psi(w_1) \cdot \ldots \cdot \psi(w_n) \cdot \ldots \in M$$

ω is ultimately periodic (with both period and threshold computable from ψ).
ω-Words

An ω-word over Σ is a function \(w : \mathbb{N} \rightarrow \Sigma \), alternatively represented by the word structure \((\mathbb{N}, <, \{ w^{-1}(a) \}_{a \in \Sigma})\).

Theorem (cf. Rabinovich, Thomas ’06)

The MSO theory of \(W_w \) is decidable iff there is a recursive factorization

\[
w = w_0 \cdot w_1 \cdot \ldots \cdot w_n \cdot \ldots\]

\[
f(0) \quad f(1) \quad f(2) \quad f(n) \quad f(n+1) \quad \ldots\]
An ω-word over Σ is a function $w : \mathbb{N} \rightarrow \Sigma$, alternatively represented by the word structure $(\mathbb{N}, <, \{w^{-1}(a)\}_{a \in \Sigma})$.

Theorem (cf. Rabinovich, Thomas '06)

The MSO theory of W_w is decidable iff there is a recursive factorization

$$w = w_0 \cdot w_1 \cdot \ldots \cdot w_n \cdot \ldots$$

$$f(0) \quad f(1) \quad f(2) \quad f(n) \quad f(n+1) \quad \ldots$$

such that for every morphism ψ into a finite monoid M the contraction of w wrt. ψ and f:

$$w_f^\psi = \psi(w_0) \cdot \psi(w_1) \cdot \ldots \cdot \psi(w_n) \cdot \ldots \in M^\omega$$

is ultimately periodic (with both period and threshold computable from ψ).
Morphic words

An word \(w \in \Sigma^\omega \) is morphic if there is a morphism \(\tau : \Gamma^* \to \Gamma^* \) with \(\tau(a) = au \) for some \(a \in \Gamma \) and a morphism \(h : \Gamma^* \to \Sigma^* \) such that

\[
w = h(a \cdot u \cdot \tau(u) \cdot \tau^2(u) \cdot \ldots \cdot \tau^n(u) \cdot \ldots)\]

Example

Let \(\tau : a \mapsto ab, b \mapsto ba \). Its fixed point \(\tau^\omega(a) \) is the Prouhet-Thue-Morse sequence

\[
t = a \cdot b \cdot ba \cdot baab \cdot baababba \cdot \ldots\]

Example

Consider \(\tau : a \mapsto ab, b \mapsto ccb, c \mapsto c \) and \(h : a, b \mapsto 1, c \mapsto 0 \). Then \(\tau^\omega(a) = a \cdot b \cdot ccb \cdot ccc cb \cdot \ldots \) and \(h(\tau^\omega(a)) \) is the characteristic sequence of the set of squares.
Morphic words

An word $w \in \Sigma^\omega$ is *morphic* if there is a morphism $\tau : \Gamma^* \to \Gamma^*$ with $\tau(a) = au$ for some $a \in \Gamma$ and a morphism $h : \Gamma^* \to \Sigma^*$ such that

$$w = h(a \cdot u \cdot \tau(u) \cdot \tau^2(u) \cdot \ldots \cdot \tau^n(u) \cdot \ldots)$$

Example

Let $\tau : a \mapsto ab, b \mapsto ba$.

Its fixed point $\tau^\omega(a)$ is the Prouhet-Thue-Morse sequence

$$t = a \cdot b \cdot ba \cdot baab \cdot baababba \cdot \ldots$$
Morphic words

An word \(w \in \Sigma^\omega \) is **morphic** if there is a morphism \(\tau : \Gamma^* \rightarrow \Gamma^* \) with \(\tau(a) = au \) for some \(a \in \Gamma \) and a morphism \(h : \Gamma^* \rightarrow \Sigma^* \) such that

\[
w = h(a \cdot u \cdot \tau(u) \cdot \tau^2(u) \cdot \ldots \cdot \tau^n(u) \cdot \ldots)
\]

Example

Let \(\tau : a \mapsto ab, b \mapsto ba \).

Its fixed point \(\tau^\omega(a) \) is the Prouhet-Thue-Morse sequence

\[
t = a \cdot b \cdot ba \cdot baab \cdot baababba \cdot \ldots
\]

Example

Consider \(\tau : a \mapsto ab, b \mapsto ccb, c \mapsto c \) and \(h : a, b \mapsto 1, c \mapsto 0 \). Then

\[
\tau^\omega(a) = a \cdot b \cdot ccb \cdot ccccb \cdot c^6b \cdot \ldots
\]

and \(h(\tau^\omega(a)) \) is the characteristic sequence of the set of squares.
Deciding the MSO theory of morphic words
[Carton, Thomas '02]

Consider
\[w = h(a \cdot u \cdot \tau(u) \cdot \tau^2(u) \cdot \ldots \cdot \tau^n(u) \cdot \ldots) \]
and a morphism \(\psi \) into a finite monoid \(M \).
Deciding the MSO theory of morphic words
[Carton, Thomas '02]

Consider
\[w = h(a \cdot u \cdot \tau(u) \cdot \tau^2(u) \cdot \ldots \cdot \tau^n(u) \cdot \ldots) \]
and a morphism \(\psi \) into a finite monoid \(M \).

The contraction of \(w \) wrt. \(\psi \) and \(f_\tau \),

\[w_{f_\tau}^\psi = \psi(h(a)) \cdot \psi(h(u)) \cdot \psi(h(\tau(u))) \cdot \psi(h(\tau^2(u))) \cdot \ldots \cdot \psi(h(\tau^n(u))) \cdot \ldots, \]
Consider
\[w = h(a \cdot u \cdot \tau(u) \cdot \tau^2(u) \cdot \ldots \cdot \tau^n(u) \cdot \ldots) \]

and a morphism \(\psi \) into a finite monoid \(M \).

The contraction of \(w \) wrt. \(\psi \) and \(f_\tau \),
\[w_{f_\tau}^\psi = \psi(h(a)) \cdot \psi(h(u)) \cdot \psi(h(\tau(u))) \cdot \psi(h(\tau^2(u))) \cdot \ldots \cdot \psi(h(\tau^n(u))) \cdot \ldots, \]

is ultimately periodic, since there are (computable) \(N \) and \(p \) such that
\[\psi \circ h \circ \tau^{n+p} = \psi \circ h \circ \tau^n \quad (n > N) \]
An **automatic presentation** of a word $w \in \Sigma^\omega$ comprises regular sets D and P_a ($a \in \Sigma$), a synchronized rational binary relation \prec over some alphabet Γ, such that $(D, \prec, \{P_a\}_{a \in \Sigma}) \cong W_w$. In particular, $(D, \prec) \cong (N, <)$ is a regular weak numeration system.

Facts
- The FO\textsubscript{mod} theory of every automatic structure is decidable.
- The class of automatic structures is closed under FO\textsubscript{mod}-interpretations.

Vince Bárány (RWTH Aachen)
An **automatic presentation** of a word \(w \in \Sigma^\omega \) comprises

- regular sets \(D \) and \(P_a \ (a \in \Sigma) \),
- a synchronized rational binary relation \(\prec \)

over some alphabet \(\Gamma \), such that \((D, \prec, \{P_a\}_{a \in \Sigma}) \cong W_w\).

In particular, \((D, \prec) \cong (\mathbb{N}, <)\) is a regular *weak* numeration system.
Automatic presentations of ω-Words

An automatic presentation of a word $w \in \Sigma^\omega$ comprises
regular sets D and P_a ($a \in \Sigma$),
a synchronized rational binary relation \prec
over some alphabet Γ, such that $(D, \prec, \{P_a\}_{a \in \Sigma}) \cong W_w$.

In particular, $(D, \prec) \cong (\mathbb{N}, <)$ is a regular weak numeration system.

Facts

- The FO^{mod} theory of every automatic structure is decidable.
- The class of automatic structures is closed under FO^{mod}-interpretations.
The usual choice for $<$ is the length-lexicographic ordering

$$x <_{\text{lex}} y \iff |x| < |y| \text{ or } |x| = |y| \text{ and } x <_{\text{lex}} y$$
Length-lexicographic presentations

The usual choice for \prec is the length-lexicographic ordering

$$x \prec_{\text{lex}} y \iff |x| < |y| \text{ or } |x| = |y| \text{ and } x \prec_{\text{lex}} y$$

Proposition (Rigo, Maes ’02)

An ω-word is morphic iff it is automatically presentable using \prec_{lex}.
Morphisms of k stacks

k-stacks as parenthesized words or as trees of height k

\[
[[abb][a][ba]]
\]

\[
\begin{array}{c}
a \\
b \\
a \\
\downarrow \\
b \quad a
\end{array}
\]
Morphisms of k stacks

k-stacks as parenthesized words or as trees of height k

$$[[abb][a][ba]]$$

Morphisms of k-stacks \approx k-stack of morphisms:

$$\text{Stack}_{\Gamma}^{(0)} = \Gamma \quad \text{Hom}_{\Gamma}^{(0)} = \Gamma \rightarrow \Gamma$$

$$\text{Stack}_{\Gamma}^{(k+1)} = [(\text{Stack}_{\Gamma}^{(k)})^*] \quad \text{Hom}_{\Gamma}^{(k+1)} = [(\text{Hom}_{\Gamma}^{(k)})^*] \quad (\text{uniformity!})$$
Morphisms of k stacks

k-stacks as parenthesized words or as trees of height k

\[
[[abb] [a] [ba]]
\]

Morphisms of k-stacks \cong k-stack of morphisms:

\[
\begin{align*}
\text{Stack}_\Gamma^{(0)} &= \Gamma \\
\text{Stack}_\Gamma^{(k+1)} &= \text{[(Stack}_\Gamma^{(k)})^*]\end{align*}
\]

\[
\begin{align*}
\text{Hom}_\Gamma^{(0)} &= \Gamma \rightarrow \Gamma \\
\text{Hom}_\Gamma^{(k+1)} &= \text{[(Hom}_\Gamma^{(k)})^*]\end{align*}
\] (uniformity!)

Application:

- $\varphi^{(0)}(\gamma^{(0)})$ is as given,
- for $\varphi^{(k+1)} = [\varphi_1^{(k)} \ldots \varphi_s^{(k)}]$ and $\gamma^{(k+1)} = [\gamma_1^{(k)} \ldots \gamma_t^{(k)}]$

\[
\varphi^{(k+1)}(\gamma^{(k+1)}) = [\varphi_1^{(k)}(\gamma_1^{(k)})\ldots\varphi_s^{(k)}(\gamma_1^{(k)}) \ldots \varphi_1^{(k)}(\gamma_t^{(k)})\ldots\varphi_s^{(k)}(\gamma_t^{(k)})]
\]
An word $w \in \Sigma^\omega$ is k-morphic if there is a morphism $\varphi \in \text{Hom}_\Gamma^{(k)}$ a k-stack $\gamma \in \text{Stack}_\Gamma^{(k)}$ and a homomorphism $h : \Gamma^* \rightarrow \Sigma^*$ such that

$$w = h \left(\prod_{n=0}^{\infty} \text{leaves}(\varphi^n(\gamma)) \right).$$
k-Morphic words

An word $w \in \Sigma^\omega$ is k-morphic if there is a morphism $\varphi \in \text{Hom}_k^\Gamma$ a k-stack $\gamma \in \text{Stack}_k^\Gamma$ and a homomorphism $h : \Gamma^* \rightarrow \Sigma^*$ such that

$$w = h \left(\prod_{n=0}^{\infty} \text{leaves}(\varphi^n(\gamma)) \right).$$

Example

Let $\gamma = [[\#]]$, $\varphi = [\varphi_0 \varphi_1]$ with $\varphi_i : \begin{array}{c|ccc} & 0 & \mapsto & 0 \\ \# & 1 & \mapsto & 1 \\ \# & \# & \mapsto & i\# \end{array}$ (Non-uniform!)

Similarly, $s = 12345678910111213 \ldots$ (Champernowne word) is 2-morphic.
Consider $u = a_0a_1 \ldots a_{tk-1} \in \Sigma^t$.
Its k-split is $(u^{(1)}, \ldots, u^{(k)})$ with $u^{(i+1)} = a_ia_{k+i} \ldots a_{(t-1)k+i}$ f.a. $i < k$.
Additionally, let $u^{(0)} = 1|u|$.
Conversely, $u = \otimes_k(u^{(1)}, \ldots, u^{(k)})$ is the k-shuffle of the $u^{(i)}$-s.
Consider $u = a_0a_1 \ldots a_{tk-1} \in \Sigma^t k$. Its k-split is $(u^{(1)}, \ldots, u^{(k)})$ with $u^{(i+1)} = a_ia_{k+i} \ldots a_{(t-1)k+i}$ f.a. $i < k$. Additionally, let $u^{(0)} = 1|u|$. Conversely, $u = \bigotimes_k (u^{(1)}, \ldots, u^{(k)})$ is the k-shuffle of the $u^{(i)}$-s.

For $0 \leq i < k$ we define the equivalence

$$u \equiv_i v \iff \forall j \leq i \quad u^{(j)} = v^{(j)}$$

(implying $|u| = |v|$).
Consider $u = a_0 a_1 \ldots a_{tk-1} \in \Sigma^t$. Its k-split is $(u^{(1)}, \ldots, u^{(k)})$ with $u^{(i+1)} = a_ia_{k+i} \ldots a_{(t-1)k+i}$ f.a. $i < k$. Additionally, let $u^{(0)} = 1|u|$. Conversely, $u = \otimes_k(u^{(1)}, \ldots, u^{(k)})$ is the k-shuffle of the $u^{(i)}$-s.

For $0 \leq i < k$ we define the equivalence

$$u =_i v \iff \forall j \leq i \ u^{(j)} = v^{(j)} \quad (\text{implying } |u| = |v|).$$

Consider some lin. ord. $<$ of Σ with induced $\langle \text{lex} \rangle$. The induced k-length-lexicographic ordering $\langle k\text{-llex} \rangle$ is defined as

$$u <_{k\text{-llex}} v \iff |u| < |v| \lor \exists i < k : u =_i v \land u^{(i+1)} \langle \text{lex} \rangle v^{(i+1)}.$$
Theorem

For all k, *an* ω-*word is* k-*morphic iff it has an aut. pres. using* $<_k$-lex. *"*
Theorem

For all k, an ω-word is k-morphic iff it has an aut. pres. using $<_{k-llex}$.

Illustration

\[
\begin{array}{ccc}
\# & 0 & 1 \\
\varepsilon & 0 & 1 \\
\varepsilon & \varphi_0 & \varphi_1
\end{array}
\quad
\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 11 \\
\varphi_0 & \varphi_1 & \varphi_0 & \varphi_1
\end{array}
\]
Theorem

For all k, an ω-word is k-morphic iff it has an aut. pres. using $<_k$-lex.

Illustration

\begin{align*}
\# & \quad 0 & \quad \# & \quad 1 & \quad \# \\
\varepsilon & \quad 0 & \quad 1 & \quad 0 & \quad 1 \\
\varepsilon & \quad \varphi_0 & \quad \varphi_1 \\
\end{align*}

\begin{align*}
\# & \quad 0 \quad 0 \quad \# \quad 0 \quad 1 \quad \# \quad 1 \quad 1 \quad \# \\
0 & \quad 0 & \quad 10 & \quad 11 & \quad 00 & \quad 10 & \quad 11 & \quad 00 & \quad 10 & \quad 11 \\
\varphi_0 & \quad \varphi_0 \varphi_1 & \quad \varphi_1 \varphi_0 & \quad \varphi_1 \varphi_1 \\
\end{align*}

Notation

For each k, \mathcal{W}_k is the class of k-morphic, or k-lex, words.
Deciding the MSO theory of k-morphic words

$k + 1$-morphic words come with a “built in” depth k factorization represented by $(=0, \ldots, =k)$

Contraction Lemma For all $w \in \mathcal{W}_{k+1}$ with “built in” $=k$ and for all ψ we have $w^{\psi}_{f=\mathcal{W}_{k+1}} \in \mathcal{W}_k$ effectively.
Deciding the MSO theory of \(k \)-morphic words

\(k + 1 \)-morphic words come with a “built in” depth \(k \) factorization represented by \((=_0, \ldots, =_k)\)

Contraction Lemma For all \(w \in \mathcal{W}_{k+1} \) with “built in” \(=_k \) and for all \(\psi \) we have \(w_{f=_{k}} \in \mathcal{W}_k \) effectively.

\[
\begin{align*}
\gamma &= [[\#]] \\
\varphi &= [\varphi_0 \varphi_1] \text{ with} \\
\varphi_i : &\begin{cases}
0 &\mapsto 0 \\
1 &\mapsto 1 \\
\# &\mapsto i\# \\
\end{cases} \\
\psi(x) &= |x|_1 \mod 2
\end{align*}
\]
Deciding the MSO theory of k-morphic words

$k + 1$-morphic words come with a “built in” depth k factorization represented by $(=_{0}, \ldots, =_{k})$

Contraction Lemma For all $w \in \mathcal{W}_{k+1}$ with “built in” $=_{k}$ and for all ψ we have $w_{f=_{k}} \in \mathcal{W}_{k}$ effectively.

\[
\begin{align*}
\gamma &= [0] \\
\tau : &\begin{array}{c}
0 \\
1
\end{array} \mapsto \begin{array}{c}
\tau_{0} \\
\tau_{1}
\end{array} \\
&\begin{array}{c}
0 \\
1
\end{array} \mapsto \begin{array}{c}
0 \\
1
\end{array}
\end{align*}
\]
Deciding the MSO theory of k-morphic words

$k + 1$-morphic words come with a “built in” depth k factorization represented by $(\equiv_0, \ldots, \equiv_k)$

Contraction Lemma For all $w \in \mathcal{W}_{k+1}$ with “built in” \equiv_k and for all ψ we have $w^{\psi}_{f_k} \in \mathcal{W}_k$ effectively.

\[\gamma = [0] \]
\[\tau : \begin{array}{c|cc} 0 & \tau_0 & \tau_1 \\ \hline 1 & 0 & 1 \\ \end{array} \]

\[\begin{array}{cccccccc} 0 & 0 & \# & 0 & 1 & \# & 1 & 0 & \# & 1 & 1 & \# \\ \hline \tau_0 \tau_0 & \tau_0 \tau_1 & \tau_1 \tau_0 & \tau_1 \tau_1 \end{array} \]

Theorem

For all k, the MSO-theory of every k-morphic word is decidable.
Main Results

Theorem (Main Theorem)

Given \(w \in \mathcal{W}_k \) and \(\varphi(\vec{x}) \in \text{MSO} \) having only first-order variables \(\vec{x} \) free, we can compute an automaton recognizing the relation defined by \(\varphi \) in \(\mathcal{W}_w \).
Main Results

Theorem (Main Theorem)

Given $w \in \mathcal{W}_k$ and $\varphi(\vec{x}) \in \text{MSO}$ having only first-order variables \vec{x} free, we can compute an automaton recognizing the relation defined by φ in \mathcal{W}_w.

Corollaries

- Each \mathcal{W}_k is closed under MSO-definable recolorings.
- If a structure is MSO-interpretable in a k-lexicographic word by formulas $\varphi(\vec{x})$ as in the theorem, then it is automatic.
Main Results

Theorem (Main Theorem)

Given \(w \in \mathcal{W}_k \) and \(\varphi(\vec{x}) \in \text{MSO} \) having only first-order variables \(\vec{x} \) free, we can compute an automaton recognizing the relation defined by \(\varphi \) in \(W_w \).

Corollaries

- Each \(\mathcal{W}_k \) is closed under MSO-definable recolorings.
- If a structure is MSO-interpretable in a \(k \)-lexicographic word by formulas \(\varphi(\vec{x}) \) as in the theorem, then it is automatic.

For each \(k \) consider \(w_k \in \{0, 1, \#\}^\omega \) obtained by concatenating all finite binary words in the \(k \)-lexicographic ordering and separated by hash marks.

Theorem (Characterization)

Let \(w \in \Sigma^\omega \). Then \(w \in \mathcal{W}_k \iff W_w \leq^I W_{w_k} \) for some interpretation \(I = (\varphi_D(x), x < y, \{\varphi_a(x)\}_{a \in \Sigma}) \) such that \(\models \forall x (\varphi_D(x) \rightarrow P_\#(x)) \).
Hierarchy theorem

Clearly, $\mathcal{W}_k \subseteq \mathcal{W}_{k+1}$.
Hierarchy theorem

Clearly, $\mathcal{W}_k \subseteq \mathcal{W}_{k+1}$.

Consider the following stuttering words defined for each k as

\[
\begin{align*}
 s_0 &= a^\omega \\
 s_1 &= abaaba^4 ba^8 ba^{16} b \ldots \\
 s_2 &= abcaabaabc(a^4 b)^4 c(a^8 b)^8 c \ldots \\
 s_3 &= abcd((a^2 b)^2 c)^2 d((a^4 b)^4 c)^4 d((a^8 b)^8 c)^8 d \ldots \\
 & \vdots \\
 s_k &= \prod_{n=0}^{\infty} (\cdots (((a_0^{2^n}) a_1)^{2^n}) \cdots)^{2^n} a_k \\
 & \vdots
\end{align*}
\]
Hierarchy theorem

Clearly, $\mathcal{W}_k \subseteq \mathcal{W}_{k+1}$.
Consider the following stuttering words defined for each k as

\[
\begin{align*}
 s_0 &= a^\omega \\
 s_1 &= abaaba^4ba^8ba^{16}b \ldots \\
 s_2 &= abcaabaabc(a^4b)^4c(a^8b)^8c \ldots \\
 s_3 &= abcd((a^2b)^2c)^2d((a^4b)^4c)^4d((a^8b)^8c)^8d \ldots \\
 & \vdots \\
 s_k &= \prod_{n=0}^{\infty}(\cdots (((a_0^{2n})a_1)^{2n}) \cdots)^{2n}a_k \\
 & \vdots
\end{align*}
\]

Theorem (Hierarchy Theorem)

*For each $k \in \mathbb{N}$ we have $s_{k+1} \in \mathcal{W}_{k+1} \setminus \mathcal{W}_k$.***
Future work and Questions

To do

▶ Locate \mathcal{W}_k in the pushdown hierarchy...
or generate them from simply-typed schemes.
(Cf. tutorial of Didier Caucal on Friday)

▶ Extend results to other (all?) automatic presentations of $(\mathbb{N}, <)$.

** Is isomorphism of k-lexicographic words decidable?

** Let $k > k'$. Is it decidable whether a k-morphic word is k'-lexicographic?
 In particular, is eventual periodicity of k-morphic words decidable?
(Cf. same problems for ω-words generated by HD0L systems, i.e. $k = 1$)
Future work and Questions

To do

- Locate \mathcal{W}_k in the pushdown hierarchy...
of generate them from simply-typed schemes.
 (Cf. tutorial of Didier Caucal on Friday)

- Extend results to other (all?) automatic presentations of $(\mathbb{N}, <)$.

** Is isomorphism of k-lexicographic words decidable?

** Let $k > k'$. Is it decidable whether a k-morphic word is k'-lexicographic?
 In particular, is eventual periodicity of k-morphic words decidable?

(Cf. same problems for ω-words generated by HD0L systems, i.e. $k = 1$)

THANK YOU!