Asymptotics of the Painlevé Equations II

Nalini Joshi

School of Mathematics and Statistics
The University of Sydney

12 September 2006
The Story So Far
- P_I

Hierarchies
- PDE Hierarchies
- Two P_{II} Hierarchies
- Solutions of P_{II} and its Hierarchies

Discrete Painlevé Equations
- dP_I

Conclusion
Outline

The Story So Far
 \(P_I \)

Hierarchies
 PDE Hierarchies
 Two \(P_{II} \) Hierarchies
 Solutions of \(P_{II} \) and its Hierarchies

Discrete Painlevé Equations
 \(dP_I \)

Conclusion
P₁ Solutions

- **Generic solutions:**

- **Approaching a tritronquée soln:**

- **Polefree or tronquée solution:**

- **Limit to a tritronquée solution:**
Theorem

There exists a unique solution $Y(x)$ of P_1 which has asymptotic expansion

$$y_f(x) = -\sqrt{\frac{x}{6}} \sum_{k=0}^{\infty} a_k (x^{1/2})^{5k}$$

in the sector $|\arg(x)| \leq 4\pi/5$.

- $Y(x)$ is real for real x in its maximal interval of existence.
- Its interval of existence contains the positive semi-axis.
- $Y(x)$ lies below the parabola $\Pi_- := \{(x, y) : x > 0, y = -\sqrt{x/6}\}$.
- $Y(x)$ is monotonically decaying in its interval of existence.
- Its first pole to the left is located at $x_p = -2.3841687 \ldots$.
- Such results remain to be proved for most Painlevé equations.
The Painlevé Equations

\[y'' = 6y^2 + x \]
\[y'' = 2y^3 + xy + \alpha \]
\[y'' = \frac{y'}{y} - \frac{y}{x} + \frac{1}{x}(\alpha y^2 + \beta) + \gamma y^3 + \frac{\delta}{y} \]
\[y'' = \frac{y'^2}{2y} + \frac{3y^3}{2} + 4xy^2 + 2(x^2 - \alpha)y + \frac{\beta}{y} \]
\[y'' = \left(\frac{1}{2y} + \frac{1}{y-1} \right) y'^2 - \frac{y'}{x} + \frac{(y-1)^2}{x^2y} (\alpha y^2 + \beta) + \frac{\gamma y}{x} + \frac{\delta y(y+1)}{y-1} \]
\[y'' = \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-x} \right) y'^2 - \left(\frac{1}{x} + \frac{1}{x-1} + \frac{1}{y-x} \right) y' \]
\[+ \frac{y(y-1)(y-x)}{x^2(x-1)^2} \left(\alpha + \frac{\beta x}{y^2} + \frac{\gamma(x-1)}{(y-1)^2} + \frac{\delta x(x-1)}{(y-x)^2} \right) \]
Interesting solutions of the Painlevé equations have subtle asymptotics.

- Generic solutions have elliptic-function-type behaviours
- One-parameter *tronquée* solutions exist that have no poles in two adjacent sectors near ∞
- A discrete set of unique *tritronquée* solutions exist with no poles in four adjacent sectors near ∞

These solutions can be continued to finite regions. However, finite properties of the Painlevé equations have not received as much attention. They deserve as much scrutiny as special functions we all know.

There still remain many, many open problems. E.g., while we can describe real solutions of the first Painlevé equation completely for $x \leq 0$ there still remain open problems for $x > 0$.
Outline

The Story So Far
 P_I

Hierarchies
 PDE Hierarchies
 Two $P_{\|}$ Hierarchies
 Solutions of $P_{\|}$ and its Hierarchies

Discrete Painlevé Equations
 dP_I

Conclusion
The KdV hierarchy is given by

\[U_{t_{2n+1}} + \partial_x L_{n+1}[U] = 0, \]

\(n = 0, 1, 2, \ldots, \) where\(^1\) \(\partial_x L_{n+1} = (\partial_x^3 + 4U\partial_x + 2U_x) \ L_n \) with

\[
\begin{align*}
\mathcal{L}_0[U] &= \frac{1}{2} \\
\mathcal{L}_1[U] &= U \quad \Rightarrow \quad U_{t_1} + U_x = 0 \\
\mathcal{L}_2[U] &= U_{2x} + 3U^2 \quad \Rightarrow \quad U_{t_3} + (U_{xx} + 3U^2)_x = 0 \\
\mathcal{L}_3[U] &= U_{4x} + 10UU_{2x} + 5U_x^2 + 10U^3 \\
&\vdots \\
&\Rightarrow \quad U_{t_5} + \left(U_{4x} + 10UU_{2x} + 5U_x^2 + 10U^3\right)_x = 0,
\end{align*}
\]

These form a completely integrable Hamiltonian system, with an infinite set of conserved, independent Hamiltonians in involution. All solutions are known if those of one are known.

Linear combinations of earlier equations in the hierarchy can be added to the latest equation without affecting the solutions.

\(^1\) Lenard recursion relation (see Lax, ’76)
Drach (1919!) found the solutions of the stationary KdV hierarchy through the linear problem.

The KdV hierarchy is the compatibility condition of

\[
\phi_{xx} + \left(\lambda + U(x, t_{2n+1}) \right) \phi = 0
\]

\[
\phi_{t_{2n+1}} = \left[\partial_x \left(\sum_{k=0}^{n} \mathcal{L}_k[U](-4\lambda)^{n-k} \right) + (-4)^n a_0 \right] \phi
\]

\[
-2 \sum_{k=0}^{n} \mathcal{L}_k[U](-4\lambda)^{n-k} \cdot \phi_x
\]
The Miura map $U = W_x - W^2$ transforms the KdV to

$$(\partial_x - 2W)(W_t - 6W^2W_x + W_{xxx}) = 0$$

Also

$$\partial_x L_{n+1} = (\partial_x - 2W)\partial_x (\partial_x + 2W) L_n[W_x - W^2]$$

$$U_{t_{2n+1}} = (\partial_x - 2W)\partial_{t_{2n+1}} W$$

\Rightarrow the KdV hierarchy becomes

$$(\partial_x - 2W)\{\partial_{t_{2n+1}} W + (\partial_{xx} + 2\partial_x W) L_n[W_x - W^2]\} = 0$$

\Rightarrow So the MKdV hierarchy is

$$W_{t_{2n+1}} + \partial_x (\partial_x + 2W) L_n[W_x - W^2] = 0$$

★ All integrable PDEs have hierarchies.
★ Are there ODE hierarchies?
Outline

The Story So Far

P₁

Hierarchies

PDE Hierarchies

Two P₁₁ Hierarchies

Solutions of P₁₁ and its Hierarchies

Discrete Painlevé Equations

dP₁

Conclusion
From MKdV to \(P_{II} \)

The MKdV equation \(W_t - 6W^2W_x + W_{xxx} = 0 \)

under

\[W(x, t_3) = \frac{V(z)}{(3t_3)^{1/3}}, \quad z = \frac{x}{(3t_3)^{1/3}} \]

reduces to

\[-\frac{V}{(3t_3)^{4/3}} - \frac{x}{(3t_3)^{5/3}} V' - 6 \frac{V^2}{(3t_3)^{2/3}} \cdot \frac{V'}{(3t_3)^{2/3}} + \frac{V'''}{(3t_3)^{4/3}} = 0 \]

\(\Rightarrow \)

\[V''' = 6V^2V' + zV' + V \quad \Rightarrow \quad P_{II} : \quad V'' = 2V^3 + zV + \alpha_1 \]
Reduction of the MKdV Hierarchy

For the MKdV hierarchy

\[W(x, t_{2n+1}) = \frac{V(z)}{\left((2n+1)t_{2n+1}\right)^{\frac{1}{2n+1}}}, \quad z = \frac{x}{\left((2n+1)t_{2n+1}\right)^{\frac{1}{2n+1}}} \]

\[\Rightarrow \]

\[W_x - W^2 = \frac{V' - V^2}{\left((2n+1)t_{2n+1}\right)^{\frac{2}{2n+1}}} \]

\[\vdots \]

\[\mathcal{L}_k[U] = \frac{1}{\left((2n+1)t\right)^{\frac{2k}{2n+1}}} \mathcal{L}_k[V' - V^2] \]

\[\Rightarrow \]

\[\frac{1}{\left((2n+1)t_{2n+1}\right)^{\frac{2(n+1)}{2n+1}}} \left(-V - zV' + \frac{d}{dz} \left(\frac{d}{dz} + 2V\right) \mathcal{L}_n[V' - V^2]\right) = 0 \]
P$_{\text{II}}$ hierarchy

Integration gives the second Painlevé hierarchy $P_{\text{II}}^{(n)}$

$$[V, \alpha_n] \equiv \left(\frac{d}{dz} + 2V \right) \mathcal{L}_n [V' - V^2] = zV + \alpha_n$$

Explicitly

\begin{align*}
P_{\text{II}}^{(1)} & : \quad V'' - 2V^3 - zV - \alpha_1 = 0 \\
P_{\text{II}}^{(2)} & : \quad V'''' - 10V^2V'' - 10V(V')^2 + 6V^5 - zV - \alpha_2 = 0 \\
P_{\text{II}}^{(3)} & : \quad V^{(6)} - 14(V'')^2V^{(4)} - 56VV'V''' - 70(V')^2V'' - 42V(V'')^2 \\
& \quad + 70V^4V'' + 140V^3(V')^2 - 20V^7 = zV + \alpha_3 \\
\vdots
\end{align*}

\begin{itemize}
\item Is this the only hierarchy associated with P_{II}? No!
\item What are the solutions’ analytic properties?
\end{itemize}
P_{II} (from MKdV) is the compatibility problem of \((Clarkson, J. \& Mazzocco, 2005)\)

\[
\frac{\partial \psi}{\partial z} = \begin{pmatrix} -i\lambda & V \\ V & i\lambda \end{pmatrix} \psi
\]

\[
\lambda \frac{\partial \psi}{\partial \lambda} = \left\{ z \begin{pmatrix} -i\lambda & V \\ V & i\lambda \end{pmatrix} + \left(\sum_{j=0}^{2n+1} A_j(i\lambda)^j - \sum_{j=0}^{2n} B_j(i\lambda)^j \right) \right\} \psi
\]

where

\[
A_{2n+1} = 4^n, \quad A_{2k} = 0, \quad \forall \, k = 0, \ldots, n,
\]

\[
A_{2k+1} = \frac{4^{k+1}}{2} \left\{ \mathcal{L}_{n-k} [V' - V^2] - \frac{d}{dz} \left(\frac{d}{dz} + 2V \right) \mathcal{L}_{n-k-1} [V' - V^2] \right\}, \quad k = 0, \ldots, n - 1,
\]

\[
B_{2k+1} = \frac{4^{k+1}}{2} \frac{d}{dz} \left(\frac{d}{dz} + 2V \right) \mathcal{L}_{n-k-1} [V' - V^2], \quad k = 0, \ldots, n - 1,
\]

\[
B_{2k} = -4^k \left(\frac{d}{dz} + 2V \right) \mathcal{L}_{n-k} [V' - V^2], \quad k = 1, \ldots, n, \quad B_0 = zV - \alpha_n,
\]

\[
C_{2k+1} = -B_{2k+1}, \quad k = 0, \ldots, n - 1, \quad C_{2k} = B_{2k}, \quad k = 0, \ldots, n,
\]

\(\star\)An extension of the Flaschka-Newell Lax pair.
Another P_{II} hierarchy

The dispersive water wave hierarchy \((J., \text{Gordoa, Pickering, 2003})\) gives rise to

\[
\mathcal{R}^n u_x + \frac{g_{n-1}}{4} \left(\left(xu^2 - (x u)_x \right)_x + 4v + 2xv_x \right)
+ \frac{g_n}{2} \left(\frac{(xu)_x}{2v + xv_x} \right) + g_{n+1} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = 0
\]

where

\[
\mathcal{R} = \frac{1}{2} \left(\begin{array}{cc} \partial_x u \partial_x^{-1} - \partial_x & 2 \\ 2v + v_x \partial_x^{-1} & u + \partial_x \end{array} \right)
\]

The case \(g_{n-1} = 0, g_n = 0 \Rightarrow \text{a } P_{II} \text{ hierarchy.}\)
Cases

$n = 1$ gives

\[
\begin{pmatrix}
-u_{xx} + (u^2)_x + 2v_x \\
2vu_x + (uv)_x + v_{xx}
\end{pmatrix} + \begin{pmatrix}
g_2 \\
0
\end{pmatrix} = 0
\]

\[\Rightarrow u_{xx} = 2u^3 + 4g_2 xu - 2\gamma_1 u + 2(\delta_1 + g_2)\]

$n = 2$ gives

\[u_{xxxx} = 2 \frac{u_{xxxx} u_x}{u} + \frac{3}{2} \frac{u_{xx}^2}{u} - 2 \frac{u_{xx} u_x^2}{u^2} + 5u^2 u_{xx} - 8(\gamma_2 - g_3 x) \frac{u_{xx}}{u} + \frac{5}{2} uu_x^2 + 8(\gamma_2 - g_3 x) \frac{u_x^2}{u^2} + 8g_3 \frac{u_x}{u} - \frac{5}{2} u^5 - 12cu^3 + 8(\gamma_2 - g_3 x) u^2 - 4(2c^2 + 6\delta_2 + 3g_3) u + 8 \frac{(\gamma_2 - g_3 x)^2}{u}\]

★This equation was also found by Kitaev (1994).

★We (Gordoa, J. & Pickering, 2006) have just discovered that this hierarchy is a Jimbo-Miwa hierarchy!
Outline

The Story So Far
 \(P_I \)

Hierarchies
 PDE Hierarchies
 Two \(P_{II} \) Hierarchies
 Solutions of \(P_{II} \) and its Hierarchies

Discrete Painlevé Equations
 \(dP_I \)

Conclusion
Asymptotic Behaviours of P_{II}

The *Boutroux* transformation $V(z) = \sqrt{z} \ u(\xi), \ \xi = 2z^{3/2}/3 \Rightarrow$

\[
u_{\xi\xi} = 2u^3 + u - \frac{u_\xi - 2\alpha_1/3}{\xi} + \frac{1}{9} \frac{u}{\xi^2}
\]

The transformation $V(z) = \alpha_n^{1/3} \ v(\zeta), \ z = \alpha_n^{-1/3} \ \zeta \Rightarrow$

\[
u_{\zeta\zeta} = 2v^3 + 1 + \frac{\zeta \ v}{\alpha_1}
\]

Generic (2-parameter) solutions are given to leading-order by Jacobian elliptic functions. There are also 1-parameter (*tronquée*) solutions and 0-parameter (*tritronquée*) solutions asymptotic to algebraic power series.

★ Do such behaviours exist for each member of $P_{II}^{(n)}$?

★ What about the more generic behaviours?
Tronquée and Tri-tronquée Solns of the P_{II} Hierarchy

Theorem

For each integer $n \geq 1$, $\exists x_0$, $|x_0| > 1$, s.t. $P_{II}^{(n)} \ (\text{from MKdV})$ has solutions asymptotic to

\[
V_{f,\infty} = \left(\frac{(-1)^n x}{2c_n}\right)^{\frac{1}{2n}} \sum_{k=0}^{\infty} a_k^{(n)} \left(\frac{2n}{2n+1} x^{\frac{2n+1}{2n}}\right)^{-k}, \quad a_0^{(n)} = 1
\]

\[
V_{f,0} = \left(-\frac{2 \alpha_n}{(2n+1) x}\right) \sum_{k=0}^{\infty} b_k^{(n)} \left(\frac{2n}{2n+1} x^{\frac{2n+1}{2n}}\right)^{-k}, \quad b_0^{(n)} = 1
\]

where

\[
c_n := \frac{2^{2n-1} \Gamma(n + 1/2)}{\Gamma(n + 1) \Gamma(1/2)}
\]

in the sectors

\[
S_n = \left\{ x \in \mathbb{C} \mid |x| > |x_0|, |\arg(x - x_0)| < n\pi / (2n + 1) \right\}
\]

(J. & Mazzocco, 2003) There are unique solutions in wider sectors.
The Large-Parameter Limit of the P\(_{II}\) Hierarchy

Under \(V(z) = \alpha_n^{1/(2n+1)} v(\zeta) \), \(z = \alpha_n^{-1/(2n+1)} \zeta \), \(P^{(n)}_{II} \) becomes

\[
\left(\frac{d}{d\zeta} + 2v \right) \mathcal{L}_n \left\{ v_\zeta - v^2 \right\} = 1 + \frac{\zeta v}{\alpha_n}
\]

\(\Rightarrow \) as \(\alpha_n \to \infty \)

\[
\left(\frac{d}{d\zeta} + 2v \right) \mathcal{L}_n \left\{ v_\zeta - v^2 \right\} = 1
\]

a first integral of the stationary version of the MKdV hierarchy.

\(\star \) We will use an invertible mapping between \(P^{(n)}_{II} \) and another hierarchy called \(P^{(n)}_{34} \) to find solutions of this leading order equation.
Suppose integer \(n \geq 1 \) is given. If \(\mathcal{L}_n\{U\} - z/2 \neq 0 \), then
\[
U = V_z - V^2
\]
(3a)
\[
V = -\frac{1}{2 \mathcal{L}_n\{U\} - z} \left(\frac{d}{dz} (\mathcal{L}_n\{U\}) - \alpha_n \right)
\]
(3b)
maps between the solutions \(V(z) \) of \(P^{(n)}_{\|} \) and solutions \(U(z) \) of
\[
P^{(n)}_{34} : \quad (2 \mathcal{L}_n\{U\} - z) \frac{d^2}{dz^2} (\mathcal{L}_n\{U\}) - \left(\frac{d}{dz} \mathcal{L}_n\{U\} \right)^2
\]
\[
+ \frac{d}{dz} \mathcal{L}_n\{U\} + (2 \mathcal{L}_n\{U\} - z)^2 U - \alpha_n (1 - \alpha_n) = 0
\]
\[
\Rightarrow \quad \frac{d}{dz} \mathcal{L}_{n+1}\{U\} = 2 U + z U_z
\]
(Clarkson, J. & Pickering, 1999)

★ This is a similarity reduction of the KdV hierarchy obtained via \(U(x, t_{2n+1}) = U(z)/[(2n + 1)t_{2n+1}]^{2/(2n+1)} \),
\[
z = x/[(2n + 1)t_{2n+1}]^{1/(2n+1)}.
\]
Under $V(z) = \alpha_n^{1/(2n+1)} v(\zeta)$, $z = \alpha_n^{1/(2n+1)} \zeta$, the mapping between $P_\Pi^{(n)}$ and $P_{34}^{(n)}$ becomes

$$u = v_\zeta - v^2$$

$$v = -\frac{1}{2 L_n\{u\} - \zeta/\alpha_n} \left(\frac{d}{d\zeta} (L_n\{u\}) - 1 \right)$$

Moreover, the differentiated $P_{34}^{(n)}$ hierarchy becomes

$$\frac{d}{d\zeta} L_{n+1}\{u\} = \frac{1}{\alpha_n} (2u + \zeta u_\zeta) \Rightarrow \frac{d}{d\zeta} L_{n+1}\{u\} = 0, \quad \alpha_n \to \infty$$

Any solution $u(\zeta)$ of this stationary KdV hierarchy yields a solution $v(\zeta)$ of $P_\Pi^{(n)}$ as $\alpha_n \to \infty$ through

$$v = -\frac{1}{2 L_n\{u\}} \left(\frac{d}{dz} (L_n\{u\}) - 1 \right).$$
Drach’s Approach

Consider two independent solutions η_1, η_2 of

$$\eta_{xx} + (\lambda + U(x, \tau))\eta = 0$$

which forms the first half of the KdV’s linear problem. The Wronskian $\omega := \eta_1' \eta_2 - \eta_1 \eta_2'$ is constant in x. The product $R(x, \lambda) := \eta_1 \eta_2$ satisfies

$$R'' = -2(\lambda + U(x, \tau))R + 2\eta_1' \eta_2'$$

$$= -2(\lambda + U(x, \tau))R + \frac{1}{2R} \left((\eta_1' \eta_2 + \eta_1 \eta_2')^2 - (\eta_1' \eta_2 - \eta_1 \eta_2')^2 \right)$$

$$= -2(\lambda + U(x, \tau))R + \frac{1}{2R} \left(R'^2 - \omega^2 \right)$$

where primes denote differentiation in x. I.e., R satisfies

$$2RR'' + 4(\lambda + U(x, \tau))R^2 - R'^2 + \omega^2 = 0.$$

The solutions of the KdV that we seek correspond to products R that are polynomial in λ. The R-equation above is called the Bank-Laine equation in complex differential equations theory.
Drach’s Approach Continued

We write

\[R(x; \lambda) = \prod_{k=1}^{n} (\gamma_k(x) - \lambda), \quad \Omega(\lambda) := \omega^2 = -4 \prod_{i=1}^{2n+1} (\lambda - \lambda_i), \]

Evaluating \(2RR'' + 4(\lambda + U(x, \tau))R^2 - R'^2 + \omega^2 = 0 \) at each zero of \(R \)
\[\Rightarrow \]

\[\gamma_j'(x)^2 \prod_{k=1, k \neq j}^{n} (\gamma_k(x) - \gamma_j(x))^2 = -4 \prod_{i=1}^{2n+1} (\gamma_j(x) - \lambda_i), \quad 1 \leq j \leq n. \]

Also, the coefficients of \(\lambda^{2n} \) give

\[U(x, \tau) = 2 \sum_{k=1}^{n} \gamma_k(x, \tau) - \sum_{i=1}^{2n+1} \lambda_i. \]
Case $n = 2$

The zeroes γ_j of R satisfy

$$\gamma_1'(x)^2 = \frac{\Omega(\gamma_1(x))}{(\gamma_1(x) - \gamma_2(x))^2}, \quad \gamma_2'(x)^2 = \frac{\Omega(\gamma_2(x))}{(\gamma_1(x) - \gamma_2(x))^2}$$

where $\Omega(\gamma_k(x)) = -4 \prod_{j=1}^{5}(\lambda_j - \gamma_k(x))$. Therefore

$$\int_{\gamma_1} \frac{ds}{\sqrt{\Omega(s)}} + \int_{\gamma_2} \frac{ds}{\sqrt{\Omega(s)}} = c_0, \quad \int_{\gamma_1} \frac{s \, ds}{\sqrt{\Omega(s)}} + \int_{\gamma_2} \frac{s \, ds}{\sqrt{\Omega(s)}} = x + c_1$$

where c_0 and c_1 are arbitrary constants. The solution

$$U(x) = 2 (\gamma_1(x) + \gamma_2(x)) - (\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5)$$

is meromorphic. Note that differentiation gives

$$\frac{\gamma_1'(x)}{\sqrt{\Omega(\gamma_1(x))}} + \frac{\gamma_2'(x)}{\sqrt{\Omega(\gamma_2(x))}} = 0, \quad \frac{\gamma_1(x) \gamma_1'(x)}{\sqrt{\Omega(\gamma_1(x))}} + \frac{\gamma_2(x) \gamma_2'(x)}{\sqrt{\Omega(\gamma_2(x))}} = 1 \Rightarrow \frac{(\gamma_1(x) - \gamma_2(x)) \gamma_k'(x)}{\sqrt{\Omega(\gamma_k(x))}} = 1$$
Drach’s Approach for the Jimbo-Miwa P_{II} Hierarchy

For any 2×2 Lax pair

$$\frac{\partial \eta}{\partial \lambda} = A \eta, \quad \frac{\partial \eta}{\partial x} = B \eta$$

$$\eta_1(x, \lambda) = \sqrt{B_{12}} q(x, \lambda) \Rightarrow q_{xx} + g(x, \lambda)q = 0$$

Consider two independent solutions q, \tilde{q} of the latter equation. Define the wronskian $\omega = q \tilde{q}' - q' \tilde{q}$. Then the product $P(x, \lambda) = q \tilde{q}$ satisfies

$$P'' = -2g(x, \lambda)P + \frac{1}{2P} \left(P'^2 - \omega^2 \right)$$

where primes denote differentiation in x.
Case $n = 1$

We have

\begin{align*}
q_{xx} &= \frac{1}{4} (3u(x)^2 + 2\lambda u(x) + \lambda^2 + x) q \\
q_\lambda &= -2(u(x) - \lambda) q_x + u'(x) q
\end{align*}

(4a) (4b)

For large α, take

$$u(x) = \alpha^{1/3} v(z), \quad z = \alpha^{1/3} x, \quad \lambda = \alpha^{1/3} \mu \Rightarrow \omega = \alpha^{1/3} \tilde{\omega}$$

which gives the P-equations

\begin{align*}
P P_{zz} &= \frac{1}{2} P_z^2 + \frac{1}{2} \left(3v^2 + 2\mu v + \mu^2 + \frac{Z}{\alpha}\right) P^2 - \frac{1}{2} \tilde{\omega}^2,

v_z P - (v - \mu) P_z &= \frac{P_\mu}{2\alpha}
\end{align*}

\Rightarrow P \sim c (v(z) - \mu), \text{ as } \alpha \to \infty. \text{ Writing } \tilde{\omega}^2 = 2c \prod_{j=1}^4 (\mu - \mu_j) \text{ we get}

$$
\begin{align*}
\sum_{j=1}^4 \mu_j &= 0, \quad \sum_{i,j=1}^4 \mu_i \mu_j = 0, \quad \sum_{i,j,k=1}^4 \mu_i \mu_j \mu_k = -2, \quad v_z^2 &= v^4 + z v^2 + 2 v + \mu_1 \mu_2 \mu_3 \mu_4
\end{align*}
$$
For $n = 1$, we get Jacobi elliptic functions directly, as opposed to a Miura transformation of Weierstrass \wp functions.

For $n \geq 2$, the solutions of $P^{(n)}_{\|}$ in the limit $\alpha \to \infty$ correspond to P being higher-degree polynomials in λ, which give hyperelliptic functions.

So this approach also works for the Jimbo-Miwa $P_{\|}$ hierarchy. But to know whether this defines different transcendental functions, we need to work out how their asymptotic behaviours in terms of hyperelliptic functions differ. We need a Jacobi-based hyperelliptic function theory.
The Story So Far

P₁

Hierarchies

PDE Hierarchies

Two P₁ Hierarchies

Solutions of P₁ and its Hierarchies

Discrete Painlevé Equations

dP₁

Conclusion
dP1: $y_{n+1} + y_n + y_{n-1} = (\alpha n + \beta)/y_n + \gamma$

- **Boutroix transformation:** $y_n = \sqrt{n} u_n \Rightarrow$

 $$u_{n+1} + u_n + u_{n-1} = \frac{\alpha}{u_n} + \frac{\gamma}{\sqrt{n}} + \mathcal{O}(1/n)$$

- Using $u_{n+1} = \bar{u}$, $u_n = u$, $u_{n-1} = \underline{u}$, we get to leading-order

 $$\bar{u} + u + \underline{u} = \frac{\alpha}{u}$$

 which can be “integrated” by using the integrating factor $u(\bar{u} - u)$:

 $$\bar{u}^2 u + \bar{u} u^2 - \alpha(\bar{u} + u) = E$$

 This is solved by Jacobi elliptic functions through a special case of their addition formula.
For the full equation, E is not constant but varies slowly with n. Along a chain of points Φ where u takes on the same value, and ω denotes a period of the elliptic function,

$$E(\Phi + \omega) - E(\Phi) \sim -\frac{1}{2\Phi} \tilde{\omega},$$

where $\tilde{\omega}$ denotes a discrete analogue of an elliptic integral of the first kind, just like the continuous case.

However, no asymptotic results have been found for q-Painlevé equations, such as

$$\bar{y} \, y = \alpha q^n + \frac{1}{y}.$$
Open Problems

- Very few analytic results are known for solutions of ODE hierarchies. We have deduced some behaviours that extend *tritronquée* solutions and elliptic-function-type behaviours. Are known asymptotic behaviours complete?

- An important open problem is to show the existence and uniqueness of bounded solutions on the real line. *No results for members of most hierarchies of order* > 2.

- Miwa’s theorem asserts the Painlevé property of hierarchies. *Is there a direct proof? What complex growth or order do the solutions have?*

- For most discrete Painlevé equations, asymptotic problems remain wide open.