Mollified impulse methods revisited

J. M. Sanz-Serna
Departamento de Matemática Aplicada
Universidad de Valladolid
Spain
(I) INTRODUCTION
The problem: Multiple-time scale second-order ODEs

\[
\frac{d}{dt}p = f(q) + g(q), \quad \frac{d}{dt}q = M^{-1}p.
\]

- \(M \) symmetric, positive-definite \(d \times d \).

- \(g \) soft/slow, no fast modes.

- \(f \) strong/fast, gives fast modes (and possibly slow).
Assumption: The integration of the reduced problem
\[
\frac{dp}{dt} = f(q), \quad \frac{dq}{dt} = M^{-1}p.
\]
is cheaper than the integration of the full system. (N-body problems, analytic integration of reduced problem, PDEs, . . .)

Aim: Integrate using g sparingly and at rate independent of the stiffness of reduced problem.
Method format: Step $n \rightarrow n + 1$, from $t_n = nh$, consists of

- **Kick:** $P_n^+ = P_n + \frac{h}{2} \tilde{G}_n$, with $\tilde{G}_n \approx g(q_n)$.

- **Oscillation:** Advance from (P_n^+, Q_n) to (P_{n+1}^-, Q_{n+1}) with reduced flow.

- **Kick:** $P_{n+1} = P_{n+1}^- + \frac{h}{2} \tilde{G}_{n+1}$.

Impulse method: Simplest choice, $\tilde{G}_n = g(Q_n)$ (Grubmüller and coworkers, Tuckermann/Berne/Martyna, multiple time-step Verlet).

Errors behave as $O(h^2)$ only if h small with respect to fast periods. (Counterexamples in García-Archilla/SS/Skeel 98.)

Mollified impulse methods (GA/SS/S): Errors in q/p are $O(h^2)/O(h)$ uniformly in stiffness; constants depend on energy of solution and bounds for g.

Stiff Order/Order reduction: Only $1/0$ for q/p in impulse, $2/1$ in mollified.
Scope: GA/SS/98 restrict attention to conservative fast forces. They introduce a mollified impulse method for each choice of a so-called *weight* function. Their methods were constructed to be symplectic.

Here fast forces need not be conservative. Free choice of *two* weight functions. We may recover methods of a well-known family of exponential integrators.

Analysis based on weight functions (not filters). Simple necessary and sufficient condition for no order reduction.
(II) DESCRIPTION OF THE NEW METHODS
Some notation:

Denote by $\mathcal{P}(p,q,t)$, $\mathcal{Q}(p,q,t)$ the flow of the reduced system.

Combine P_n and Q_n into $Y_n = (P_n, Q_n)$ (similarly write $y(t) = (p(t), q(t))$, $\mathcal{Y} = (\mathcal{P}, \mathcal{Q})$, etc.).

Variational equation for Jacobian $\mathcal{Y}'(\alpha, t)$ of $\mathcal{Y}(\alpha, t)$

$$\frac{\partial}{\partial t} \mathcal{Y}'(\alpha, t) = \begin{bmatrix} 0 & f'(Q(\alpha, t)) \\ M^{-1} & 0 \end{bmatrix} \mathcal{Y}'(\alpha, t); \quad \mathcal{Y}' = \begin{bmatrix} \mathcal{P}_p & \mathcal{P}_q \\ \mathcal{Q}_p & \mathcal{Q}_q \end{bmatrix}.$$
Force format for kicks: Rather than $\bar{Q}_n = g(Q_n)$, use

$$\bar{G}_n = M(Q_n, h)g(A(Q_n, h)),$$

$A(Q_n, h)$ is an average of values of q and M is a so-called mollifier matrix.

Weight functions: A wf is a bounded, integrable real-valued function $\chi(t)$ assumed even $\chi(-t) \equiv \chi(t)$ and to satisfy

$$\int_{-\infty}^{\infty} \chi(s) ds = 1.$$

(Note $\chi \geq 0$ not required.) Two wf used to specify each method, one ϕ defines the averaging, the other ψ the mollifier.
Averaging: (\(\phi\) wf for averaging)

\[
A(Q_n, h) = \frac{1}{h} \int_{-\infty}^{\infty} q^*(t)\phi\left(\frac{t}{h}\right)dt = \int_{-\infty}^{\infty} q^*(hs)\phi(s)ds,
\]

where \(q^*(t)\) is obtained by solving the reduced problem with initial conditions \(q = Q_n, p = 0\).

Since \(q^*\) is an even function of \(t\), the integrals are in practice replaced by twice their value over \((0, \infty)\).
Mollification: Find a matrix-valued function Y' by integrating the variational problem ($q^*(t)$ as above)

$$\frac{d}{dt}Y' = \begin{bmatrix} 0 & f'(q^*(t)) \\ M^{-1} & 0 \end{bmatrix} Y'$$

with initial condition $Y'(0) = I_{2d}$.

Set (ψ wf for averaging)

$$\mathcal{M}(Q_{n+1}, h) = \frac{1}{h} \int_{-\infty}^{\infty} R(t)\psi\left(\frac{t}{h}\right) dt = \int_{-\infty}^{\infty} R(hs)\psi(s) ds,$$

where $R(t)$ is the upper left $d \times d$ block of the inverse matrix $Y'(t)^{-1}$, i.e.

$$R(t) = [I_d, 0_d]Y'(t)^{-1}[I_d, 0_d]^T.$$
Motivation for mollifier: Impulse method equivalent to exact integration of

\[\frac{d^2}{dt^2}q = f(q) + \sum_n \delta(t - t_n)g(Q_n), \]

where \(\delta \) is standard Dirac’s function.

Rather employ less abrupt versions

\[\frac{d^2}{dt^2}q = f(q) + \sum_n \psi\left(\frac{t - t_n}{h}\right)G_n^*, \]

where \(G_n^* \) is the force \(g(A(Q_n, h)) \) to be mollified.

Forces \(\psi\left(\frac{(t - t_n)}{h}\right)G_n^* \) are incorporated into the solution of the reduced problem via Alekseev-Groebner (AG)/nonlinear variation of constants formula.
Since
\[y(t_b) = \mathcal{V}(y(t_a), t_b - t_a) + \int_{t_a}^{t_b} \mathcal{V}'(y(s), t_b - s) \left[g(y(s)) \right] ds, \]

the effect of \(\psi((t - t_n)/h)G^*_n \), acting while \(t \leq t_n \), is to add to the solution
\[
\left(\int_{-\infty}^{t_n} \mathcal{V}'(y(s), t_n - s)\psi\left(\frac{s - t_n}{h}\right) ds \right) \begin{bmatrix} G^*_n \\ 0 \end{bmatrix},
\]

which, using properties of flows, may be rewritten as
\[
\left(\int_{-\infty}^{t_n} \mathcal{V}'((0, Q_n), s - t_n)^{-1}\psi\left(\frac{s - t_n}{h}\right) ds \right) \begin{bmatrix} G^*_n \\ 0 \end{bmatrix},
\]

hence the recipe for the mollifier.
(III) PARTICULAR CASES
Conservative fast forces: \(f(q) = -\nabla W(q) \). Geometry of Hamiltonian flows imply \(\gamma'(\alpha, t)^{-1} = J^{-1} \gamma'(\alpha, t)^T J \). No need for inverting \((2d) \times (2d)\) Jacobian \(Y'\): instead mollify with

\[R(t) = Q_q(t)^T, \]

with \(Q_q \) found from solving

\[\frac{d}{dt} \begin{bmatrix} Q_p(t) \\ Q_q(t) \end{bmatrix} = \begin{bmatrix} 0 & f'(q^*(t)) \\ M^{-1} & 0 \end{bmatrix} \begin{bmatrix} Q_p(t) \\ Q_q(t) \end{bmatrix} \]

with initial condition \(Q_p(t) = 0_d, Q_q(t) = I_d \).

Hence if \(\psi = \phi \), we have as in GA/SS/S

\[\mathcal{M}(Q_n, h) = A'(Q_n, h)^T. \]

If slow forces are also conservative \(g(q) = -\nabla U(q) \), then kicking force is \(\bar{G}_n = U(A(Q_{n+1}, h)) \), and method is symplectic.
Linear fast forces: \(f(q) = -Sq \), with \(S \) a stiffness matrix. Suppose that \(M^{-1/2}SM^{-1/2} \) possesses only real eigenvalues \(\geq 0 \) and can be diagonalized.

There exists a unique (in general, nonsymmetric) \(\Omega \) such that \(\Omega^2 = M^{-1/2}SM^{-1/2} \) and spectrum of \(\Omega \) is \(\geq 0 \). Reduced flow is rotation with matrix

\[
R(t) = \begin{bmatrix}
M^{1/2}C(t), M^{-1/2} & M^{1/2} \frac{d}{dt}C(t)M^{1/2} \\
M^{-1/2} \int_0^t C(s)ds M^{-1/2} & M^{-1/2}C(t)M^{1/2}
\end{bmatrix},
\]

with \(C(t) = \cos t\Omega \). (Trig. functions are deemphasized here.)
Averaging/Mollification in linear case: By definition

\[A(Q_n, h) = M^{1/2} \left(\int_{-\infty}^{\infty} \cos sh\Omega \phi(s) \, ds \right) M^{-1/2} Q_n. \]

Introducing the Fourier transform of the even function \(\phi \)

\[\hat{\phi}(\omega) = \int_{-\infty}^{\infty} \exp(-i\omega t) \phi(t) \, dt = \int_{-\infty}^{\infty} \cos \omega t \phi(t) \, dt, \]

average becomes

\[A(Q_n, h) = A_h Q_n = \left(M^{1/2} \hat{\phi}(h\Omega) M^{-1/2} \right) Q_n. \]

Similarly

\[M_h = M^{1/2} \hat{\psi}(h\Omega) M^{-1/2}. \]
Filters: Therefore for linear fast forces, methods can be described by/implemented through the associated filters $\hat{\phi}$ and $\hat{\psi}$, rather than in terms of the defining weights ϕ and ψ.

Methods here essentially reproduce a well-known family of exponential integrators (Hairer/Lubich). (Convergence studied by Hairer/Lubich/Wanner, Grimm/Hochbruck.)
(III) ANALYSIS: MOLLIFICATION

(From now, fast forces are linear, $M = I$.)

Notation:

• Function for kicking force: \(\bar{g}(\cdot) = \mathcal{M}_h g(A_h \cdot) \). At true solution: \(\bar{g}_n = \bar{g}(q_n) \).

• Averaged but unmollified force: \(g^*(\cdot) = g(A_h \cdot) \). At true solution: \(g^*_n = g^*(q_n) \).

• \(L_0, L_1, L_2 \) resp denote a bound for \(g \), a Lipschitz constant for \(g \) and a Lipschitz constant for the derivative of \(g \), when they exist.

• If \(g \) is Lipschitz continuous, then so are \(\bar{g} \) and \(g^* \) with constants \(\bar{L}_1 = \|\psi\|_1 L_1 \) and \(L^* = \|\psi\|_1 L_1 \|\phi\|_1 \).
Global errors bounded by quadrature errors: (Gronwall.)

Theorem 1. \(g \) Lipschitz continuous, \(P_0 = p(0) \) and \(Q_0 = q(0) \).

Employ a \((\phi, \psi)\)-method (\(\phi \) and/or \(\psi \) may be taken to be \(\delta \)).

Then global errors satisfies

\[
\|Q_n - q_n\| \leq \cosh(t_n\sqrt{\bar{L}_1}) \cdot \max_{1 \leq j \leq n} \|\sigma_{q,j}\|
\]

\[
\|P_n - p_n\| \leq \|\sigma_{p,n}\| + \bar{L}_1 t_n \cosh(t_n\sqrt{\bar{L}_1}) \cdot \max_{1 \leq j \leq n} \|\sigma_{q,j}\|
\]

where the quadrature errors \(\sigma_{p,n} \) \(\sigma_{q,n} \) are the first and second components of

\[
\sum_{j=0}^{n} h_{1_j} \left[\frac{\cos(t_n - t_j)\Omega}{\Omega^{-1} \sin(t_n - t_j)\Omega} \right] \bar{g}_j - \int_0^{t_n} \left[\frac{\cos(t_n - t)\Omega}{\Omega^{-1} \sin(t_n - t)\Omega} \right] g(q(t)) \, dt
\]

(\(1_j \) is defined to be \(1 \) except for \(1_0 = 1_n = 1/2 \)).
• For *impulse method* σ is error in trapezoidal rule!

• Since $h\Omega$ is not assumed small, $\cos(t_n-t)\Omega$ has an unbounded first derivative. Cannot expect to derive $O(h)$ error bounds for σ_p that are uniform in Ω.

• Possible to construct counterexample that shows that for p quadrature error (and global error) is only $O(1)$.

• For q component situation is better: $\Omega^{-1}\sin(t_n-t)\Omega$ has a bounded first derivative and standard theory leads to $O(h)$ error bounds for σ_q and therefore for $Q_n - q_n$.
When mollified forces are used, the quadrature error may be rewritten (invert the argument used to motivate the mollification formula) as

\[
\begin{bmatrix}
\sigma_{p,n} \\
\sigma_{q,n}
\end{bmatrix} = \int_{-\infty}^{\infty} \left[\frac{\cos(t_n - t) \Omega}{\Omega^{-1} \sin(t_n - t) \Omega} \right] \sum_{j=0}^{n} 1_j \psi \left(\frac{t - t_j}{h} \right) g^*_j \, dt \\
- \int_{0}^{t_n} \left[\frac{\cos(t_n - t) \Omega}{\Omega^{-1} \sin(t_n - t) \Omega} \right] g(q(t)) \, dt.
\]

As in Filon quadrature, now trig. functions are not interpolated!

Discrepancy in integration limits above eliminated in next lemma, which leaves us with an interpolation problem.
Lemma 1. For a mollified method (ϕ, ψ) (\(\phi\) may be the Dirac function) in which ψ has bounded support and vanishes for $|t| > \mu > 0$, the quadrature error is of the form

\[
\begin{bmatrix}
\sigma_{p,n} \\
\sigma_{q,n}
\end{bmatrix} = \int_0^{t_n} \begin{bmatrix}
\cos(t_n - t)\Omega \\
\Omega^{-1} \sin(t_n - t)\Omega
\end{bmatrix} I(t) \, dt + \beta_n,
\]

where $I(t)$ is the interpolation error

\[
I(t) = \left(\sum_{j=0}^{n} \psi \left(\frac{t - t_j}{h} \right) g_j^* \right) - g(q(t))
\]

and β_n represents boundary effects and can be estimated as

\[
\|\beta_n\| \leq 2\mu(1 + t_n^2)^{1/2}\|\psi\|_1 L_0 h.
\]
The interpolation problem: Minimum requirement is to interpolate with no error the constant functions:

\[(*) \quad \sum_{j=-\infty}^{\infty} \psi(t-j) \equiv 1.\]

From the theory behind the Poisson summation formula, the rhs in (*) is a 1-periodic function \(\Psi\) whose Fourier series

\[\psi(t) = \sum_{n} c_n \exp(i2\pi nt)\]

has coefficients given by values of the Fourier transform of \(\psi\):

\[c_n = \int_{0}^{1} \exp(-i2\pi nt)\psi(t) dt = \int_{-\infty}^{\infty} \exp(-i2\pi nt)\psi(t) dt = \hat{\psi}(2\pi n).\]

Therefore (*) is equivalent to the condition

\[(**) \quad \hat{\psi}(2\pi n) = 0, \quad n = \pm 1, \pm 2, \ldots\]
Theorem 2. With the hypotheses of Theorem 1, assume that g has a bounded derivative and that ψ has bounded support and satisfies (*) or (**) (ϕ may be the Dirac function). Then the global error possesses a bound

$$\|P_n - p_n\| + \|Q_n - q_n\| \leq Ch$$

where the constant C depends on ψ, ϕ, t_n, L_0, L_1 and also on a bound E for the reduced energy of the true solution

$$E = \max_{-\mu h \leq t \leq t_n + \mu h} \left(\frac{1}{2} \|p(t)\|^2 + \frac{1}{2} \|\Omega q(t)\|^2 \right).$$

Conversely, if the ψ, ϕ-method, where ψ is boundedly supported and ϕ may be δ, possesses a global error bound of this form, then (*) and (**) hold true.
(V) ANALYSIS: AVERAGING
From the variation AG formula:

\[p(t) = \mathcal{P}(p(0), q(0), t) + \int_0^t \cos s\Omega g(q(s)) \, ds, \]

\[q(t) = \mathcal{Q}(p(0), q(0), t) + \int_0^t \Omega^{-1} \sin s\Omega g(q(s)) \, ds, \]

or, after integration by parts,

\[q(t) = \mathcal{Q}(p(0), q(0), t) + \int_0^t \cos s\Omega \int_0^s g(q(u)) \, du \, ds. \]

Thus, one quadrature of the force builds up the momentum and two make \(q \) evolve. Hence expect that global error for \(q \) may be expressed by two quadratures. This is the subject of the next result.
Lemma 2. If ψ is of bounded support, the quadrature error $\sigma_{q,n}$ satisfies

$$\sigma_{q,n} = \int_0^{t_n} \cos(t_n - t) \Omega I^*(t) \, dt + \beta_n^*$$

with I^* equal to the integrated interpolation error

$$I^*(t) = \int_0^t \left[\left(\sum_{j=0}^{n} \lambda_j(s)g_j^* \right) - g(q(ts)) \right] \, ds,$$

β_n^* represent boundary contributions with

$$\|\beta_n^*\| \leq 2\mu^2 \|\psi\|_1 L_0 h^2,$$

and, away from the boundaries, $\lambda_j(t) = \psi((t - t_j)/h)$.

31
To gain insight, look at integrated interpolation error at \(t = t_n \)

\[
I^*(t_n) = \sum_{j=0}^{n} h_1 j g^*_j - \int_{0}^{t_n} g(q(s)) \, ds.
\]

Again the trapezoidal quadrature if \(g^*_j = g(q_j) \). Idea: choose \(q^*_j \) so that

\[
h g^*_j \approx \int_{0}^{t_n} \phi\left(\frac{t - t_j}{h}\right) g(q(t)) \, dt
\]

Consistency again demands

\[
(†) \sum_{j=-\infty}^{\infty} \phi(t - j) \equiv 1, \quad \text{i.e.} \quad (††) \hat{\phi}(2\pi n) = 0, \quad n = \pm 1, \pm 2, \ldots
\]
Theorem 3. With the hypotheses of Theorem 1, assume that g has a bounded, Lipschitz continuous derivative and that the weight functions ϕ and ψ have bounded support and satisfy (*)-(**), (†)-(††). Then the global error possesses a bound

$$h\|P_n - p_n\| + \|Q_n - q_n\| \leq Ch^2$$

where the constant C depends on ψ, ϕ, t_n, L_0, L_1, L_2 and E.

Conversely, if the (ψ, ϕ)-method with boundedly supported ϕ and ψ, has a bound of this form, then (*)-(**) and (†)-(††) hold.
(VI) WEIGHTS AND FILTERS
Question: If the filters (used for linear problems) are known, can we find weight functions that generated then?

Paley–Wiener: square integrable fnctn. \(\hat{\chi}(\omega) \) is the Fourier transform of a square integrable function \(\chi \) supported in \([-\nu, \nu]\), \(\nu > 0 \) if and only if \(\hat{\chi} \) can be extended to a holomorphic function of \(\omega \) in the whole complex plane with

\[
| \hat{\chi}(\omega) | \leq C \exp(\nu |\omega|).
\]

Paley–Wiener space: \(PW_{[-\nu,\nu]} \)
Titchmarsh: \(\hat{\chi} \) in \(PW_{[-\nu,\nu]} \) can be written in terms of its infinitely many zeros \(\omega_n \) as

\[
\hat{\chi}(\omega) = \hat{\chi}(0) \prod_n \left(1 - \frac{\omega}{\omega_n}\right).
\]

Short filter: Hence the choice in GA/SS/S

\[
\hat{\chi}_s(\omega) = \prod_{k=1} \left(1 - \frac{\omega^2}{4k^2\pi^2}\right) = \frac{\sin(\omega/2)}{\omega/2}
\]

is the *minimal* filter. (\(\chi \) is 1 for \(-1/2 \leq t \leq 1/2\).) Other suggested choices: multiply the filter/take convolution of the weight.