Untangling Tanglegrams

Katherine St. John
Lehman College and the Graduate Center
City University of New York
stjohn@lehman.cuny.edu

(Thanks to Dan Gusfield for suggesting & discussing this work)

How are these species related?

Brighamia insignis

Delissea rhytidosperma

Erythrina sandwicensis

Hibiscus saintjohnianus

Hibiscus waimeae

Pandanus tectorius

Pritchardia perlmanii

(Images courtesy of the National Tropical Botanical Gardens.)

Displaying Trees

(Images courtesy of the National Tropical Botanical Gardens. Trees drawn with Dendroscope.)

Displaying Trees

(Images courtesy of the National Tropical Botanical Gardens. Trees drawn with Dendroscope.)

Displaying Trees

Brighamia Erythrina H Saintjohnianus H_Waimea Pritchardia Delissea Pandanus

Pandanus

Erythrina

Delissea

H Waimea H Saintjohnianus

Pritchardia

Tanglegrams

• Goal: Find the layout with the minimal number of crossings.

- Goal: Find the layout with the minimal number of crossings.
- Planarity: Is there a planar layout?

- Goal: Find the layout with the minimal number of crossings.
- Planarity: Is there a planar layout?
- "1-Layer" or Fixed: One tree remains fixed, the other's layout can change.

- Goal: Find the layout with the minimal number of crossings.
- Planarity: Is there a planar layout?
- "1-Layer" or Fixed: One tree remains fixed, the other's layout can change.
- "2-Layer" or General: Both trees' layouts can change.

Planarity

Is there a planar layout of the tanglegram?

• Easily reduces to planarity question for graphs.

Planarity

Is there a planar layout of the tanglegram?

- Easily reduces to planarity question for graphs.
- Simple application of Hopcroft & Tarjan '74 on planarity of graphs, noted in Fernau, Kaufmann & Poths '05.

Planarity

Is there a planar layout of the tanglegram?

- Easily reduces to planarity question for graphs.
- Simple application of Hopcroft & Tarjan '74 on planarity of graphs, noted in Fernau, Kaufmann & Poths '05.
- (Also, rediscovered and shown $O(n^2)$ in Lozano *et al.* WABI '07.)

One Tree Fixed: Minimizing Crossings

Dwyer and Schreiber '05

- "On-line" version of the problem: align new tree with previous loaded tree.
- Dwyer and Schreiber '05: $O(n^2)$.
- Fernau, Kaufmann & Poths '05: $O(n \log^2 n)$.

General Question

• For binary trees, Fernau *et al.* '05 show NP-hardness and fixed parameter tractability for binary trees.

General Question

- For binary trees, Fernau *et al.* '05 show NP-hardness and fixed parameter tractability for binary trees.
- Via different arguments, we get the result for all trees and improve the running time of the fixed parameter tractability.

• Reduction to MAXCUT by Fernau et al. '05.

- Reduction to MAXCUT by Fernau et al. '05.
- We have a simpler reduction to Bipartite Graph Crossing Number:

Every bipartite graph can be encoded as a tanglegram in polynomial time.

General Question is Fixed Parameter Tractable

- Ferneau *et al.* '05 give poly-time fixed parameter tractability for binary trees only, and conjecture difficulties for d-ary trees, d>2.
- We show a quadratic time fixed parameter tractability for all (including non-binary) trees.

Fixed Parameter Tractability

 Roughly, the ability to efficiently calculate instances that are small with respect to some parameter is called fixed parameter tractability.

Fixed Parameter Tractability

- Roughly, the ability to efficiently calculate instances that are small with respect to some parameter is called fixed parameter tractability.
- Though NP-hard, some problems can be solved in time polynomial in the size of the input size but exponential in the size of a fixed parameter.

Fixed Parameter Tractability

- Roughly, the ability to efficiently calculate instances that are small with respect to some parameter is called fixed parameter tractability.
- Though NP-hard, some problems can be solved in time polynomial in the size of the input size but exponential in the size of a fixed parameter.
- In this talk, the parameter, k, will be the minimal crossing number of the tanglegram.

• Grohe '04 and Kawarabayashi & Reed '07 show that computing the graph crossing number is FPT.

- Computing the graph crossing number is FPT.
- This does not work directly, since in graphs, crossings can occur anywhere.

- Computing the graph crossing number is FPT.
- Cannot apply directly, since in graphs, crossings can occur anywhere.
- "Fatten up" tree edges to make more costly to cross.

- Computing the graph crossing number is FPT.
- Cannot apply directly, since in graphs, crossings can occur anywhere.
- "Fatten up" tree edges to make more costly to cross.

Applications

Fernau et al. '05 suggested several problems that our encoding should shed light on:

- Weighted version: "crossings have higher weights if they occur between edges of larger different subtrees".
- Determine the complexity of the maximum planar subgraph problem.
- Is there an approximation algorithm?

Acknowledgements

H. saintjohnianus

- The Isaac Newton Institute and the special year in phylogenetics
- The United States National Science Foundation for their generous support