Bill Jackson
School of Mathematical Sciences
Queen Mary, University of London
England

Newton Institute, 15 January, 2008
Let $G = (V, E)$ be a graph, $M \subseteq E$, and $U \subseteq V$.

- M is a **matching** in G if no two edges in M are incident to the same vertex in G.

Let $G = (V, E)$ be a graph, $M \subseteq E$, and $U \subseteq V$.

- M is a **matching** in G if no two edges in M are incident to the same vertex in G.
- M **saturates** U if every vertex in U is incident with an edge in M.

Note that if M is a matching in G and U is a vertex cover of G then $|M| \leq |U|$.

Bill Jackson

Graph Theory II
Let $G = (V, E)$ be a graph, $M \subseteq E$, and $U \subseteq V$.

- M is a **matching** in G if no two edges in M are incident to the same vertex in G.

- M **saturates** U if every vertex in U is incident with an edge in M.

- M is a **perfect matching** in G if M saturates every vertex of G.

Note that if M is a matching in G and U is a vertex cover of G then $|M| \leq |U|$.

Bill Jackson
Graph Theory II
Let $G = (V, E)$ be a graph, $M \subseteq E$, and $U \subseteq V$.

- M is a **matching** in G if no two edges in M are incident to the same vertex in G.
- M **saturates** U if every vertex in U is incident with an edge in M.
- M is a **perfect matching** in G if M saturates every vertex of G.
- U is a **vertex cover** of G if every edge of G is incident to a vertex in U.

Note that if M is a matching in G and U is a vertex cover of G then $|M| \leq |U|$.
Let $G = (V, E)$ be a graph, $M \subseteq E$, and $U \subseteq V$.

- M is a **matching** in G if no two edges in M are incident to the same vertex in G.
- M **saturates** U if every vertex in U is incident with an edge in M.
- M is a **perfect matching** in G if M saturates every vertex of G.
- U is a **vertex cover** of G if every edge of G is incident to a vertex in U.
- Note that if M is a matching in G and U is a vertex cover of G then $|M| \leq |U|$.
A graph G is **bipartite** if its vertices can be partitioned into two sets X, Y such that each edge of G is incident with a vertex in X and a vertex in Y.

Theorem

Let G be a bipartite graph with bipartition $\{X, Y\}$. G has a matching which saturates X if and only if all $S \subseteq X$ have at least $|S|$ neighbours in Y. (Hall)

The maximum size of a matching in G is equal to the minimum size of a vertex cover of G. (König)
A graph G is **bipartite** if its vertices can be partitioned into two sets X, Y such that each edge of G is incident with a vertex in X and a vertex in Y.

Theorem

Let G be a bipartite graph with bipartition $\{X, Y\}$.

- G has a matching which saturates X if and only if all $S \subseteq X$ have at least $|S|$ neighbours in Y. (Hall)
- The maximum size of a matching in G is equal to the minimum size of a vertex cover of G. (König)
Given a graph G, let $k^{odd}(G)$ denote the number of connected components of G with an odd number of vertices.
Given a graph G, let $k^{odd}(G)$ denote the number of connected components of G with an odd number of vertices.

Theorem

Let $G = (V, E)$ be a graph.

- G has a perfect matching if and only if $k^{odd}(G - S) \leq |S|$ for all $S \subseteq V$. (Tutte)
- The maximum size of a matching in G is equal to $\min\{(|V| - k^{odd}(G - S) + |S|)/2\}$ over all $S \subseteq V$. (Berge)
Given a graph G, let $k^{\text{odd}}(G)$ denote the number of connected components of G with an odd number of vertices.

Theorem

Let $G = (V, E)$ be a graph.

- G has a perfect matching if and only if $k^{\text{odd}}(G - S) \leq |S|$ for all $S \subset V$. (Tutte)
- The maximum size of a matching in G is equal to $\min\{(|V| - k^{\text{odd}}(G - S) + |S|)/2\}$ over all $S \subset V$. (Berge)

Note

Edmonds gave a polynomial time algorithm for determining a maximum size matching in a graph.
A set of vertices in a graph G is independent if no two vertices in the set are adjacent in G.
A set of vertices in a graph G is independent if no two vertices in the set are adjacent in G.

It is NP-hard to determine the maximum size of an independent set of vertices in a graph.
INDEPENDENT SETS

- A set of vertices in a graph G is independent if no two vertices in the set are adjacent in G.
- It is NP-hard to determine the maximum size of an independent set of vertices in a graph.
- We can determine a maximum size independent set of vertices in a line graph since this is equivalent to determining a maximum size matching in the original graph (which we can do by Edmond’s algorithm).
INDEPENDENT SETS

- A set of vertices in a graph G is **independent** if no two vertices in the set are adjacent in G.
- It is NP-hard to determine the maximum size of an independent set of vertices in a graph.
- We can determine a maximum size independent set of vertices in a line graph since this is equivalent to determining a maximum size matching in the original graph (which we can do by Edmond’s algorithm).
- Minty showed that Edmond’s algorithm could also be used to give a polynomial time algorithm for finding a maximum size independent set of vertices for the more general family of claw-free graphs. (An error in Minty’s algorithm was subsequently corrected by Nakamura and Tamura.)
Let $G = (V, E)$ be a graph and $k \geq 1$ be an integer.

- A **proper k-vertex-colouring** of G is an assignment of k colours to the vertices of G such that no pair of adjacent vertices receive the same colour. (Equivalently, it is a partition of V into k independent sets of vertices.)
Let $G = (V, E)$ be a graph and $k \geq 1$ be an integer.

- A **proper k-vertex-colouring** of G is an assignment of k colours to the vertices of G such that no pair of adjacent vertices receive the same colour. (Equivalently, it is a partition of V into k independent sets of vertices.)

- The **chromatic number** of G, $\chi(G)$, is the minimum value of k such that G has a proper k-vertex-colouring.
Let $G = (V, E)$ be a graph and $k \geq 1$ be an integer.

- A **proper k-vertex-colouring** of G is an assignment of k colours to the vertices of G such that no pair of adjacent vertices receive the same colour. (Equivalently, it is a partition of V into k independent sets of vertices.)

- The **chromatic number** of G, $\chi(G)$, is the minimum value of k such that G has a proper k-vertex-colouring.

- For each $k \geq 3$, it is NP-complete to decide if a graph has a proper k-vertex colouring.
Let \(G = (V, E) \) be a graph and \(k \geq 1 \) be an integer.

- A **proper \(k \)-vertex-colouring** of \(G \) is an assignment of \(k \) colours to the vertices of \(G \) such that no pair of adjacent vertices receive the same colour. (Equivalently, it is a partition of \(V \) into \(k \) independent sets of vertices.)

- The **chromatic number** of \(G \), \(\chi(G) \), is the minimum value of \(k \) such that \(G \) has a proper \(k \)-vertex-colouring.

- For each \(k \geq 3 \), it is NP-complete to decide if a graph has a proper \(k \)-vertex colouring.

Theorem (Brooks)

Let \(G \) be a connected simple graph of maximum degree \(\Delta \). Then \(\chi(G) \leq \Delta + 1 \) with equality if and only if \(G = K_{\Delta+1} \), or \(\Delta = 2 \) and \(G \) is an odd cycle.
Map Colour Theorems

Theorem

Let G be a loopless graph.

- If G can be embedded in the plane then $\chi(G) \leq 4$. (Appel and Haken)
Let G be a loopless graph.

- If G can be embedded in the plane then $\chi(G) \leq 4$. (Appel and Haken)
- If G can be embedded in the plane and has no cycles of length three then $\chi(G) \leq 3$. (Grötzsch)
Map Colour Theorems

Theorem

Let G be a loopless graph.

- If G can be embedded in the plane then $\chi(G) \leq 4$. (Appel and Haken)
- If G can be embedded in the plane and has no cycles of length three then $\chi(G) \leq 3$. (Grötzsch)
- If G can be embedded in a surface of Euler characteristic $c \neq 2$ then $\chi(G) \leq \lfloor (7 + \sqrt{49 - 24c})/2 \rfloor$. (Heawood)

This bound is best possible for all surfaces except the Klein bottle. (Ringel and Youngs)
Perfect Graphs

Let $G = (V, E)$ be a simple graph and $U \subseteq V$.

- U is a **clique** of G if the subgraph of G induced by U is a complete graph. The **clique number** of G, $\omega(G)$, is the maximum size of a clique in G.
Let \(G = (V, E) \) be a simple graph and \(U \subseteq V \).

- \(U \) is a **clique** of \(G \) if the subgraph of \(G \) induced by \(U \) is a complete graph. The **clique number** of \(G \), \(\omega(G) \), is the maximum size of a clique in \(G \).

- It is easy to see that \(\chi(G) \geq \omega(G) \).
Let $G = (V, E)$ be a simple graph and $U \subseteq V$.

- U is a **clique** of G if the subgraph of G induced by U is a complete graph. The **clique number** of G, $\omega(G)$, is the maximum size of a clique in G.

- It is easy to see that $\chi(G) \geq \omega(G)$.

- G is **perfect** if $\chi(H) = \omega(H)$ for all induced subgraphs H of G.

An odd cycle of length at least five and its complement are examples of minimal non-perfect graphs. Berge conjectured that they are the only such examples.

Theorem (Chudnovsky, Robertson, Seymour and Thomas)

Let G be a simple graph. Then G is perfect if and only if G does not contain an odd cycle of length at least five or its complement as an induced subgraph.
Let $G = (V, E)$ be a simple graph and $U \subseteq V$.

- U is a **clique** of G if the subgraph of G induced by U is a complete graph. The **clique number** of G, $\omega(G)$, is the maximum size of a clique in G.

- It is easy to see that $\chi(G) \geq \omega(G)$.

- G is **perfect** if $\chi(H) = \omega(H)$ for all induced subgraphs H of G.

- An odd cycle of length at least five and its complement are examples of minimal non-perfect graphs. Berge conjectured that they are the only such examples.
Let $G = (V, E)$ be a simple graph and $U \subseteq V$.

- U is a **clique** of G if the subgraph of G induced by U is a complete graph. The **clique number** of G, $\omega(G)$, is the maximum size of a clique in G.
- It is easy to see that $\chi(G) \geq \omega(G)$.
- G is **perfect** if $\chi(H) = \omega(H)$ for all induced subgraphs H of G.
- An odd cycle of length at least five and its complement are examples of minimal non-perfect graphs. Berge conjectured that they are the only such examples.

Theorem (Chudnovsky, Robertson, Seymour and Thomas)

Let G be a simple graph. Then G is perfect if and only if G does not contain an odd cycle of length at least five or its complement as an induced subgraph.
Let $G = (V, E)$ be a graph of maximum degree Δ and $k \geq 1$ be an integer.

- A proper k-edge-colouring of G is an assignment of k colours to the edges of G such that no pair of adjacent edges receive the same colour. (Equivalently, it is a partition of E into k matchings.)
Let $G = (V, E)$ be a graph of maximum degree Δ and $k \geq 1$ be an integer.

- A **proper k-edge-colouring** of G is an assignment of k colours to the edges of G such that no pair of adjacent edges receive the same colour. (Equivalently, it is a partition of E into k matchings.)

- The **chromatic index** of G, $\chi'(G)$, is the minimum value of k such that G has a proper k-edge-colouring. Clearly $\chi'(G) \geq \Delta$.
Let $G = (V, E)$ be a graph of maximum degree Δ and $k \geq 1$ be an integer.

- A **proper k-edge-colouring** of G is an assignment of k colours to the edges of G such that no pair of adjacent edges receive the same colour. (Equivalently, it is a partition of E into k matchings.)

- The **chromatic index** of G, $\chi'(G)$, is the minimum value of k such that G has a proper k-edge-colouring. Clearly $\chi'(G) \geq \Delta$.

- If G is simple and H is the line graph of G then $\chi'(G) = \chi(H)$.
Let $G = (V, E)$ be a graph of maximum degree Δ and $k \geq 1$ be an integer.

- A **proper k-edge-colouring** of G is an assignment of k colours to the edges of G such that no pair of adjacent edges receive the same colour. (Equivalently, it is a partition of E into k matchings.)

- The **chromatic index** of G, $\chi'(G)$, is the minimum value of k such that G has a proper k-edge-colouring. Clearly $\chi'(G) \geq \Delta$.

- If G is simple and H is the line graph of G then $\chi'(G) = \chi(H)$.

- For each $k \geq 3$, it is NP-complete to decide if a graph has a proper k-edge-colouring. (Holyer)
The Shannon-Vizing Theorem

Let G be a graph of maximum degree Δ.

- $\chi'(G) \leq 3\Delta/2$. (Shannon)
- $\chi'(G) \leq \Delta + \mu(G)$ where $\mu(G)$ denotes the maximum multiplicity of an edge of G. (Vizing)
- If G is bipartite then $\chi'(G) = \Delta$. (König)
Let \(G = (V, E) \) be a graph and \(\Gamma \) be an additive abelian group.

- Construct a digraph \(\vec{G} \) by giving the edges of \(G \) an arbitrary orientation. For \(U \subseteq V \) and \(\bar{U} = V - U \), let \(E^+(U) \) be the set of arcs from \(U \) to \(\bar{U} \) in \(\vec{G} \) and \(E^-(U) = E^+(\bar{U}) \).
Let $G = (V, E)$ be a graph and Γ be an additive abelian group.

- Construct a digraph \vec{G} by giving the edges of G an arbitrary orientation. For $U \subseteq V$ and $\bar{U} = V - U$, let $E^+(U)$ be the set of arcs from U to \bar{U} in \vec{G} and $E^-(U) = E^+(\bar{U})$.

- Let $f : E(\vec{G}) \rightarrow \Gamma$ and put $f^+(U) = \sum_{e \in E^+(U)} f(e)$ and $f^-(U) = \sum_{e \in E^-(U)} f(e)$.

A Γ-flow f for G with respect to \vec{G} is nowhere-zero if $f(e) \neq 0$ for all $e \in E(G)$.
Let $G = (V, E)$ be a graph and Γ be an additive abelian group.

- Construct a digraph \tilde{G} by giving the edges of G an arbitrary orientation. For $U \subseteq V$ and $\bar{U} = V - U$, let $E^+(U)$ be the set of arcs from U to \bar{U} in \tilde{G} and $E^-(U) = E^+(\bar{U})$.

- Let $f : E(\tilde{G}) \to \Gamma$ and put $f^+(U) = \sum_{e \in E^+(U)} f(e)$ and $f^-(U) = \sum_{e \in E^-(U)} f(e)$.

- f is a Γ-flow for G, with respect to \tilde{G}, if $f^+(v) = f^-(v)$ for all $v \in V(G)$.

Let $G = (V, E)$ be a graph and Γ be an additive abelian group.

- Construct a digraph \vec{G} by giving the edges of G an arbitrary orientation. For $U \subseteq V$ and $\bar{U} = V - U$, let $E^+(U)$ be the set of arcs from U to \bar{U} in \vec{G} and $E^-(U) = E^+(\bar{U})$.

- Let $f : E(\vec{G}) \to \Gamma$ and put $f^+(U) = \sum_{e \in E^+(U)} f(e)$ and $f^-(U) = \sum_{e \in E^-(U)} f(e)$.

- f is a Γ-flow for G, with respect to \vec{G}, if $f^+(v) = f^-(v)$ for all $v \in V(G)$.

- If, in addition, $f(e) \neq 0$ for all $e \in E(G)$, then f is a nowhere-zero Γ-flow for G.

Bill Jackson

Graph Theory II
The condition $f^+(v) = f^-(v)$ for all $v \in V(G)$ is equivalent to the apparently stronger condition that $f^+(U) = f^-(U)$ for all $U \subseteq V(G)$. This implies that, if G has a nowhere-zero Γ-flow, then G is bridgeless. (A bridge in G is an edge-cut of size one.) Since reversing the orientation on an edge e of \vec{G} is equivalent to replacing $f(e)$ by $-f(e)$, the number of distinct nowhere-zero Γ-flows for G is independent of the chosen orientation \vec{G} of G.

Bill Jackson
Graph Theory II
Group valued flows, continued

- The condition \(f^+(v) = f^-(v) \) for all \(v \in V(G) \) is equivalent to the apparently stronger condition that \(f^+(U) = f^-(U) \) for all \(U \subseteq V(G) \).

- This implies that, if \(G \) has a nowhere-zero \(\Gamma \)-flow, then \(G \) is bridgeless. (A \textbf{bridge} in \(G \) is an edge-cut of size one.)
The condition $f^+(v) = f^-(v)$ for all $v \in V(G)$ is equivalent to the apparently stronger condition that $f^+(U) = f^-(U)$ for all $U \subseteq V(G)$.

This implies that, if G has a nowhere-zero Γ-flow, then G is bridgeless. (A bridge in G is an edge-cut of size one.)

Since reversing the orientation on an edge e of \tilde{G} is equivalent to replacing $f(e)$ by $-f(e)$, the number of distinct nowhere-zero Γ-flows for G is independent of the chosen orientation \tilde{G} of G.

Bill Jackson

Graph Theory II
Let $G = (V, E)$ be a graph and $k \geq 1$ be an integer.

- A nowhere-zero k-flow for G is a nowhere-zero \mathbb{Z}-flow, f, such that $|f(e)| \leq k - 1$ for all $e \in E(G)$.

G has a nowhere-zero k-flow if and only if G has a nowhere-zero \mathbb{Z}_k-flow (Tutte).

The number of distinct nowhere-zero Γ-flows for G is the same for all abelian groups Γ of the same order. (Tutte)

A connected plane graph G has a proper k-vertex-colouring if and only if its planar dual G^* has a nowhere-zero k-flow. (Tutte)
Let $G = (V, E)$ be a graph and $k \geq 1$ be an integer.

- A nowhere-zero k-flow for G is a nowhere-zero \mathbb{Z}-flow, f, such that $|f(e)| \leq k - 1$ for all $e \in E(G)$.

- G has a nowhere-zero k-flow if and only if G has a nowhere-zero \mathbb{Z}_k-flow (Tutte).
Let $G = (V, E)$ be a graph and $k \geq 1$ be an integer.

- A *nowhere-zero k-flow* for G is a nowhere-zero \mathbb{Z}-flow, f, such that $|f(e)| \leq k - 1$ for all $e \in E(G)$.

- G has a nowhere-zero k-flow if and only if G has a nowhere-zero \mathbb{Z}_k-flow (Tutte).

- The number of distinct nowhere-zero Γ-flows for G is the same for all abelian groups Γ of the same order. (Tutte)
Let $G = (V, E)$ be a graph and $k \geq 1$ be an integer.

- A *nowhere-zero k-flow* for G is a nowhere-zero \mathbb{Z}-flow, f, such that $|f(e)| \leq k - 1$ for all $e \in E(G)$.

- G has a nowhere-zero k-flow if and only if G has a nowhere-zero \mathbb{Z}_k-flow (Tutte).

- The number of distinct nowhere-zero Γ-flows for G is the same for all abelian groups Γ of the same order. (Tutte)

- The number of nowhere-zero \mathbb{Z}_k-flows for G may differ from the number of nowhere-zero k-flows for G.

Let $G = (V, E)$ be a graph and $k \geq 1$ be an integer.

- A nowhere-zero k-flow for G is a nowhere-zero \mathbb{Z}-flow, f, such that $|f(e)| \leq k - 1$ for all $e \in E(G)$.

- G has a nowhere-zero k-flow if and only if G has a nowhere-zero \mathbb{Z}_k-flow (Tutte).

- The number of distinct nowhere-zero Γ-flows for G is the same for all abelian groups Γ of the same order. (Tutte)

- The number of nowhere-zero \mathbb{Z}_k-flows for G may differ from the number of nowhere-zero k-flows for G.

- A connected plane graph G has a proper k-vertex-colouring if and only if its planar dual G^* has a nowhere-zero k-flow. (Tutte)
Conjecture (Tutte)

Let G be a bridgeless graph.

- G has a nowhere zero 5-flow.
- If G has no edge-cuts of size three then G has a nowhere zero 3-flow.
<table>
<thead>
<tr>
<th>Conjecture (Tutte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be a bridgeless graph.</td>
</tr>
<tr>
<td>- G has a nowhere zero 5-flow.</td>
</tr>
<tr>
<td>- If G has no edge-cuts of size three then G has a nowhere zero 3-flow.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be a bridgeless graph.</td>
</tr>
<tr>
<td>- G has a nowhere zero 6-flow. (Seymour)</td>
</tr>
<tr>
<td>- If G has no edge-cuts of size three then G has a nowhere zero 4-flow. (Jaeger)</td>
</tr>
</tbody>
</table>
Let \(G = (V, E) \) be a graph. For each positive integer \(t \), let \(P_G(t) \) be the number of proper \(t \)-vertex-colourings of \(G \). (By definition \(P_G(t) \equiv 1 \) if \(E = \emptyset \), and \(P_G(t) \equiv 0 \) if \(G \) has a loop.)
Let $G = (V, E)$ be a graph. For each positive integer t, let $P_G(t)$ be the number of proper t-vertex-colourings of G. (By definition $P_G(t) \equiv 1$ if $E = \emptyset$, and $P_G(t) \equiv 0$ if G has a loop.)

Deletion-Contraction Lemma

Let G be a graph and e be an edge of G which is not a loop. Then

$$P_G(t) = P_{G-e}(t) - P_{G/e}(t).$$
Let $G = (V, E)$ be a graph. For each positive integer t, let $P_G(t)$ be the number of proper t-vertex-colourings of G. (By definition $P_G(t) ≡ 1$ if $E = \emptyset$, and $P_G(t) ≡ 0$ if G has a loop.)

Deletion-Contraction Lemma

Let G be a graph and e be an edge of G which is not a loop. Then

$$P_G(t) = P_{G-e}(t) - P_{G/e}(t).$$

This implies that $P_G(t)$ is a polynomial in t, the **chromatic polynomial** of G.

Let $G = (V, E)$ be a graph. For each positive integer t, let $F_G(t)$ be the number of nowhere-zero \mathbb{Z}_t-flows of G. (By definition $F_G(t) \equiv 1$ if $E = \emptyset$.)
The Flow Polynomial

Let $G = (V, E)$ be a graph. For each positive integer t, let $F_G(t)$ be the number of nowhere-zero \mathbb{Z}_t-flows of G. (By definition $F_G(t) \equiv 1$ if $E = \emptyset$.)

Deletion-Contraction Lemma

Let G be a graph and e be an edge of G which is not a bridge. Then

$$F_G(t) = F_{G/e}(t) - F_{G-e}(t).$$
Let $G = (V, E)$ be a graph. For each positive integer t, let $F_G(t)$ be the number of nowhere-zero \mathbb{Z}_t-flows of G. (By definition $F_G(t) \equiv 1$ if $E = \emptyset$.)

Deletion-Contraction Lemma

Let G be a graph and e be an edge of G which is not a bridge. Then

$$F_G(t) = F_{G/e}(t) - F_{G-e}(t).$$

This implies that $F_G(t)$ is a polynomial in t, the flow polynomial of G.

Let $G = (V, E)$ be a graph. For each positive integer t, let $F_G(t)$ be the number of nowhere-zero \mathbb{Z}_t-flows of G. (By definition $F_G(t) \equiv 1$ if $E = \emptyset$.)

Deletion-Contraction Lemma

Let G be a graph and e be an edge of G which is not a bridge. Then

$$F_G(t) = F_{G/e}(t) - F_{G-e}(t).$$

This implies that $F_G(t)$ is a polynomial in t, the **flow polynomial** of G.

Lemma (Tutte)

If G is a connected plane graph and G^* is its planar dual then

$$tF_G(t) = P_{G^*}(t).$$
Let $G = (V, E)$ be a graph.

- For $A \subseteq E$, let $k(A)$ be the number of connected components in the subgraph (V, A).
The Tutte Polynomial

Let $G = (V, E)$ be a graph.

- For $A \subseteq E$, let $k(A)$ be the number of connected components in the subgraph (V, A).
- The **rank** of A is $r(A) = |V| - k(A)$.
The Tutte Polynomial

Let \(G = (V, E) \) be a graph.

- For \(A \subseteq E \), let \(k(A) \) be the number of connected components in the subgraph \((V, A)\).
- The rank of \(A \) is \(r(A) = |V| - k(A) \).
- The Tutte polynomial of \(G \) is the 2-variable polynomial given by

\[
T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)}.
\]
The Tutte Polynomial

Let $G = (V, E)$ be a graph.

- For $A \subseteq E$, let $k(A)$ be the number of connected components in the subgraph (V, A).
- The rank of A is $r(A) = |V| - k(A)$.
- The Tutte polynomial of G is the 2-variable polynomial given by

$$T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)}.$$

Deletion-Contraction Lemma

Let G be a graph and e be an edge of G. Then

- $T_G(x, y) = T_{G-e}(x, y) + T_{G/e}(x, y)$ if e is neither a loop not a bridge,
- $T_G(x, y) = xT_{G-e}(x, y)$ if e is a bridge,
- $T_G(x, y) = yT_{G-e}(x, y)$ if e is a loop.
Let $G = (V, E)$ be a graph.

- If G is embedded in the plane and G^* is its planar dual then $T_G(x, y) = T_{G^*}(y, x)$.

$P_G(t) = (-1)^r(E) t^k(E) T_G(1-t, 0)$

$F_G(t) = (-1)^{|V|} T_G(0, 1-t)$

$T_G(1, 1)$ is the number of spanning trees of G.

$T_G(2, 0)$ is the number of acyclic orientations of G.

$T_G(0, 2)$ is the number of totally-cyclic orientations of G.

Bill Jackson
Graph Theory II
Let $G = (V, E)$ be a graph.

- If G is embedded in the plane and G^* is its planar dual then $T_G(x, y) = T_{G^*}(y, x)$.
- If $G = G_1 \cup G_2$ and $G_1 \cap G_2$ has at most one vertex and no edges then $T_G(x, y) = T_{G_1}(x, y)T_{G_2}(x, y)$.
Let $G = (V, E)$ be a graph.

- If G is embedded in the plane and G^* is its planar dual then
 \[T_G(x, y) = T_{G^*}(y, x). \]

- If $G = G_1 \cup G_2$ and $G_1 \cap G_2$ has at most one vertex and no edges then
 \[T_G(x, y) = T_{G_1}(x, y)T_{G_2}(x, y). \]

- $P_G(t) = (-1)^{r(E)}t^{k(E)}T_G(1 - t, 0)$.

$T_G(1, 1)$ is the number of spanning trees of G.

$T_G(2, 0)$ is the number of acyclic orientations of G.

$T_G(0, 2)$ is the number of totally-cyclic orientations of G.

Bill Jackson
Graph Theory II
Let $G = (V, E)$ be a graph.

- If G is embedded in the plane and G^* is its planar dual then $T_G(x, y) = T_{G^*}(y, x)$.
- If $G = G_1 \cup G_2$ and $G_1 \cap G_2$ has at most one vertex and no edges then $T_G(x, y) = T_{G_1}(x, y) T_{G_2}(x, y)$.
- $P_G(t) = (-1)^{r(E)} t^{k(E)} T_G(1 - t, 0)$.
- $F_G(t) = (-1)^{|V|} T_G(0, 1 - t)$.

$T_G(1, 1)$ is the number of spanning trees of G.

$T_G(2, 0)$ is the number of acyclic orientations of G.

$T_G(0, 2)$ is the number of totally-cyclic orientations of G.
Let $G = (V, E)$ be a graph.

- If G is embedded in the plane and G^* is its planar dual then $T_G(x, y) = T_{G^*}(y, x)$.
- If $G = G_1 \cup G_2$ and $G_1 \cap G_2$ has at most one vertex and no edges then $T_G(x, y) = T_{G_1}(x, y)T_{G_2}(x, y)$.
- $P_G(t) = (-1)^{r(E)}t^{k(E)}T_G(1-t, 0)$.
- $F_G(t) = (-1)^{|V|}T_G(0, 1-t)$.
- $T_G(1, 1)$ is the number of spanning trees of G.
Let $G = (V, E)$ be a graph.

- If G is embedded in the plane and G^* is its planar dual then $T_G(x, y) = T_{G^*}(y, x)$.
- If $G = G_1 \cup G_2$ and $G_1 \cap G_2$ has at most one vertex and no edges then $T_G(x, y) = T_{G_1}(x, y) T_{G_2}(x, y)$.
- $P_G(t) = (-1)^{r(E)} t^{k(E)} T_G(1 - t, 0)$.
- $F_G(t) = (-1)^{|V|} T_G(0, 1 - t)$.
- $T_G(1, 1)$ is the number of spanning trees of G.
- $T_G(2, 0)$ is the number of acyclic orientations of G.

$P_G(t)$ and $F_G(t)$ are the Poincaré polynomial and the logarithmic Frobenius polynomial respectively.
Let $G = (V, E)$ be a graph.

- If G is embedded in the plane and G^* is its planar dual then $T_G(x, y) = T_{G^*}(y, x)$.
- If $G = G_1 \cup G_2$ and $G_1 \cap G_2$ has at most one vertex and no edges then $T_G(x, y) = T_{G_1}(x, y)T_{G_2}(x, y)$.
- $P_G(t) = (-1)^{r(E)}t^{k(E)}T_G(1 - t, 0)$.
- $F_G(t) = (-1)^{|V|}T_G(0, 1 - t)$.
- $T_G(1, 1)$ is the number of spanning trees of G.
- $T_G(2, 0)$ is the number of acyclic orientations of G.
- $T_G(0, 2)$ is the number of totally-cyclic orientations of G.
The Pott’s model partition function, or multivariate Tutte polynomial, of a graph $G = (V, E)$ is the $(|E| + 1)$-variable polynomial given by

$$Z_G(q, w) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} w_e,$$

where $w = (w_e)_{e \in E}$ is a vector of indeterminates.
The Pott’s model partition function, or multivariate Tutte polynomial, of a graph \(G = (V, E) \) is the \((|E| + 1)\)-variable polynomial given by

\[
Z_G(q, w) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} w_e,
\]

where \(w = (w_e)_{e \in E} \) is a vector of indeterminates.

Deletion-Contraction Lemma

Let \(G \) be a graph and \(e \) be an edge of \(G \). Then

\[
Z_G(q, w) = Z_{G-e}(q, w|_{E-e}) + w_e Z_{G/e}(q, w|_{E-e}).
\]
The **Pott’s model partition function**, or **multivariate Tutte polynomial**, of a graph $G = (V, E)$ is the $(|E| + 1)$-variable polynomial given by

$$Z_G(q, w) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} w_e,$$

where $w = (w_e)_{e \in E}$ is a vector of indeterminates.

Deletion-Contraction Lemma

Let G be a graph and e be an edge of G. Then

$$Z_G(q, w) = Z_{G-e}(q, w|_{E-e}) + w_eZ_{G/e}(q, w|_{E-e}).$$

Lemma

$$T_G(x, y) = (x - 1)^{-k(E)}(y - 1)^{-|V|}Z_G((x - 1)(y - 1), (y - 1)1).$$
Theorem (Fortuin-Kasteleyn)

Let G be a graph and q be a positive integer. Let $S = \{1, 2, \ldots, q\}$. Then

$$Z_G(q, w) = \sum_{\sigma: V \rightarrow S} \prod_{e \in E} (1 + w_e \delta_e),$$

where $\delta_e = 1$ if σ maps the end-vertices of e onto the same element of S, and $\delta_e = 0$ otherwise.