Connectivity:

\[(A, B) \text{ partition of } E.\]

\[\lambda(A, B) = \gamma(A) + \gamma(B) - \gamma(M).\]

What does this measure?

- Such \(\lambda(A, B) = 0 \)
 A separation

- \(\lambda(A, B) = 1 \)
 A 2-separation

- \(\lambda(A, B) = 2 \)
 A 3-separation

\(\gamma(M) \) is not necessarily in \(E \).
Matroid connectivity generalises vertex connectivity.

\[G = (V, E), \ (A, B) \text{ partition of } E. \]

- Assume \(A, B \) induce connected subgraphs:
 \[r_{m(G)}(A) = |V(A)| - 1 \]
 \[r_{m(G)}(B) = |V(B)| - 1 \]
 \[r_{m(G)}(G) = |V(G)| - 1 \]

\[\lambda_{m(G)}(A, B) = |V(A) \cup V(B)| - 1 \]

\(\lambda_{m(G)}(A, B) \) is the size of a vertex cut.

\[|V(A) \cup V(B)| = 2 \]
Menger's Theorem for Matroids

\[\kappa(A, B) = \min \{ \lambda(A', B') : A' \supset A, B' \supset B \} \]

\(\kappa(A, B) \) is an upper bound for the amount of communication between A and B.

Tutte's Linking Lemma:
There exists partition \(X, Y \) of \(E - (A \cup B) \) s.t.

\[\lambda_{\text{min}}(X, Y)(A, B) = \kappa_m(A, B). \]

Easy proof.
\[M \text{ k-connected if no non-trivial } k\text{-separation.} \]

\[G_1 \quad G_2 \]

\[M(G), M(G) \text{ not connected.} \]

\[\bullet G \text{ 2-connected } \iff M(G) \text{ 2-connected.} \]

\[\bullet G \text{ 3-connected } \iff M(G) \text{ 3-connected.} \]

Almost - up to parallel edges.
Bill's decomposition of 2-connected graphs into 3-connected pieces extends to matroids.

⇐ Often suffices to solve problems for 3-connected matroids.
Regular Matroids

A matrix over \(\mathbb{Q} \) is **totally unimodular** if all subdeterminants are in \(\{0, \pm 1\} \).

Matroid \(M \) is **regular** if it can be represented by a totally unimodular matrix.

Examples:
- **Graphic Matroids**
- **CoGraphic Matroids**

\[
R_{10}
\]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
Theorem (Tutte)

The following are equivalent.

(1) M is regular
(2) M is representable over all fields
(2) M is representable over GF(2) and if (not characteristic 2).
(3) M has no minor isomorphic to

\(U_{2,4}, F_7, F_7^x \).

Beautiful!

But of limited use algorithmically.
Direct Sums

2-sums → Preserve Regularity
3-sums

Theorem (Seymour):

A regular 1ff can be built by direct sums, 2-sums and 3-sums from graphic matroids, cographic matroids and copies of R_{10}.

Leads to polynomial time recognition algorithm
Oracle Complexity

Determining if M is binary is provably exponential. The binary spike.
Ternary Classes:

Dyadic - matrices over \(\mathbb{Q} \), subdeterminants so, \(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \).

\[\text{Dyadic} \]

\[= \mathbb{GF}(3) \setminus \mathbb{GF}(5) \]

\[= \mathbb{GF}(3) \setminus \mathbb{Q} \]

Excluded Minors? Structure?
\mathfrak{U} - matroids

(should be complex unimodular)

matrices over \mathbb{C} subdeterminants

modulo 1.

\mathfrak{U} - matroids

$= \mathbb{GF}(3) \cap \mathbb{GF}(4)$

Excluded minors \checkmark

Structure $?$
Golden Mean.

\(\lambda, \beta \) roots of \(x^2 - x - 1 = 0 \).

Matrices over \(\mathbb{R} \), subdeterminants

So, \(\lambda^i \beta^j \).

Vertical (unpublished)

Golden mean

\[= \text{GF}(4) \cap \text{GF}(5) \]
Chromatic Polynomials of Matroids $P(M; \lambda)$

G a graph $P(M(G); \lambda) = P(G; \lambda)$

(essentially)

$P(M^x(G); \lambda) =$ Flow Polynomial of G

Theorem: M, $GF(q)$ - represented by A. Then,

$$\max \{ k \text{ s.t. } \exists \text{ a subspace } W \text{ of } PG(\mathbb{F}, q) \text{ s.t. } W \cap A = \phi \text{ and } r(W) = r - k \}$$

$$= \min \{ k \text{ s.t. } P(M; q^k) > 0 \}$$

\Rightarrow CRAMP \Rightarrow ROTA

The critical problem