Chromatic Factorisation of Graphs

Kerri Morgan

Clayton School of Information Technology
Monash University

CSM workshop - Zeros of graph polynomials, 2008

Joint work with Graham Farr
Overview

- Chromatic Polynomial
- Basic Properties
- Chromatic Factorisation
- Certificate of Factorisation
- Infinite Family of Graphs that have Chromatic Factorisations
The Chromatic Polynomial

$P(G, \lambda)$ gives the number of proper λ-colourings of a graph G

$$P(G, \lambda) = \lambda^5 - 8\lambda^4 + 24\lambda^3 - 31\lambda^2 + 14\lambda$$

$$= \lambda(\lambda - 1)(\lambda - 2)(\lambda^2 - 5\lambda + 7)$$

- $P(G, 0) = 0$
- $P(G, 1) = 0$
- $P(G, 2) = 0$
- $P(G, 3) = 6$
- $P(G, 4) = 72$
- $\chi(G) = 3$
Addition-identification

\[P(G, \lambda) = P(G + uv, \lambda) + P(G/uv, \lambda) \]
Deletion-contraction

\[P(G, \lambda) = P(G \setminus e, \lambda) - P(G/e, \lambda) \]
Chromatic polynomial of graph with more than a single component

\[P(G, \lambda) = P(H_1, \lambda)P(H_2, \lambda) \]
Clique-gluings

G is an r-gluing, or clique-gluing, of graphs H_1 and H_2, if G can be obtained by identifying an r-clique in H_1 with an r-clique in H_2.
A graph is *clique-separable* if it is isomorphic to the graph obtained by an r-gluing of graphs H_1 and H_2.

\[P(G, \lambda) = \frac{P(H_1, \lambda)P(H_2, \lambda)}{P(K_r, \lambda)} \]
Chromatic Equivalence

- G is chromatically equivalent to H if $P(G, \lambda) = P(H, \lambda)$
- $G \sim H$
Motivation

- Large amount of research on roots of chromatic polynomials
- Little research into the algebraic theory of chromatic roots
- First step in finding roots of a polynomial is factorisation
Motivation

- Large amount of research on roots of chromatic polynomials
- Little research into the algebraic theory of chromatic roots
- First step in finding roots of a polynomial is factorisation
Motivation

- Large amount of research on roots of chromatic polynomials
- Little research into the algebraic theory of chromatic roots
- First step in finding roots of a polynomial is factorisation
If there exist graphs G, H_1, H_2 such that

$$P(G, \lambda) = \frac{P(H_1, \lambda)P(H_2, \lambda)}{P(K_r, \lambda)}$$

where $r \leq \min\{\chi(H_1), \chi(H_2)\}$, then $P(G, \lambda)$ has a \textit{chromatic factorisation} with \textit{chromatic factors} $P(H_1, \lambda)$ and $P(H_2, \lambda)$.

If either H_1 or H_2 is the complete graph K_s then $r < s$.
$P(G, \lambda)$ has a chromatic factorisation:

- G is an r-gluing of graphs H_1 and H_2,
- $G \sim H$, and H is an r-gluing of graphs H_1 and H_2
- Any others?
$P(G, \lambda)$ has a chromatic factorisation
- G is an r-gluing of graphs H_1 and H_2,
- $G \sim H$, and H is an r-gluing of graphs H_1 and H_2
- Any others?
$P(G, \lambda)$ has a chromatic factorisation

- G is an r-gluing of graphs H_1 and H_2,
- $G \sim H$, and H is an r-gluing of graphs H_1 and H_2
- Any others?
Does there exist $P(G, \lambda)$ that has a chromatic factorisation but is not the chromatic polynomial of any clique-separable graph?

Yes ...

<table>
<thead>
<tr>
<th>n</th>
<th>Chromatic polynomials</th>
<th>Non-isomorphic graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>97</td>
</tr>
<tr>
<td>10</td>
<td>485</td>
<td>3018</td>
</tr>
<tr>
<td>$n \leq 10$</td>
<td>512</td>
<td>3118</td>
</tr>
</tbody>
</table>
Certificate of Factorisation

Sequence of steps P_0, \ldots, P_i

- P_0 is $P(G, \lambda)$
- P_i is $\frac{P(H_1, \lambda)P(H_2, \lambda)}{P(K_r, \lambda)}$
- P_j is formed from P_{j-1} by a certification step
A Certificate of Factorisation: Certificate 1

\[P(G, \lambda) = P(G + uv, \lambda) + P(G/uv, \lambda) \] \hspace{1cm} (1)

\[= \frac{P(H_1, \lambda)P(H_3, \lambda)}{P(K_s, \lambda)} + \frac{P(H_1, \lambda)P(H_4, \lambda)}{P(K_s, \lambda)} \] \hspace{1cm} (2)

\[= P(H_1, \lambda) \left(\frac{P(H_3, \lambda)}{P(K_s, \lambda)} + \frac{P(H_4, \lambda)}{P(K_t, \lambda)} \right) \] \hspace{1cm} (3)

\[= \frac{P(H_1, \lambda)}{P(K_r, \lambda)} \left(\frac{P(K_r, \lambda)P(H_3, \lambda)}{P(K_s, \lambda)} + \frac{P(K_r, \lambda)P(H_4, \lambda)}{P(K_t, \lambda)} \right) \] \hspace{1cm} (4)

\[= \frac{P(H_1, \lambda)}{P(K_r, \lambda)} (P(H_5, \lambda) + P(H_6, \lambda)) \] \hspace{1cm} (5)

\[= \frac{P(H_1, \lambda)P(H_2, \lambda)}{P(K_r, \lambda)} \] \hspace{1cm} (6)

(1) add-ident., (2) clique-gluing, (3) common factor,
(4) multiply by \(\frac{P(K_r, \lambda)}{P(K_r, \lambda)} \), (5) clique-gluing and (6) add-ident.
Certification Steps:

- Addition-identification
- Deletion-contraction
- Chromatic equivalence
- Clique-gluings
- Basic algebra
Certificates of Factorisation

- **Simple**
 - Graph is clique-separable
 - Graph is chromatically equivalent to a clique-separable graph

- Identified cases where $P(G, \lambda)$ has a chromatic factorisation but is not the chromatic polynomial of any clique-separable graph
 - Certificates of factorisation, $n \leq 9$

- Identified an infinite family of graphs that have a chromatic factorisation
 - Not clique-separable
 - Certificate of factorisation for this family
Certificates of Factorisation

- Simple
 - Graph is clique-separable
 - Graph is chromatically equivalent to a clique-separable graph
- Identified cases where $P(G, \lambda)$ has a chromatic factorisation but is not the chromatic polynomial of any clique-separable graph
 - Certificates of factorisation, $n \leq 9$
- Identified an infinite family of graphs that have a chromatic factorisation
 - Not clique-separable
 - Certificate of factorisation for this family
Certificates of Factorisation

- Simple
 - Graph is clique-separable
 - Graph is chromatically equivalent to a clique-separable graph

- Identified cases where $P(G, \lambda)$ has a chromatic factorisation but is not the chromatic polynomial of any clique-separable graph
 - Certificates of factorisation, $n \leq 9$

- Identified an infinite family of graphs that have a chromatic factorisation
 - Not clique-separable
 - Certificate of factorisation for this family
A Certificate of Factorisation

- G is $C_{4n+1} + (0, 2n + 1) + (2n, 4n)$, $n \geq 2$
- H_1 is C_{2n+1}

G:\[\begin{array}{c}
1 & 2 & 2n-2 & 2n-1 & 2n & 2n+1 \\
4n & 4n-1 & 2n & 2n+2 & 2n+1 & 2n+2
\end{array}\]

H_1:\[\begin{array}{c}
1 & 2 & 2n-2 & 2n-1 \\
0 & 2n & 2n+1 & 2n+2
\end{array}\]

H_2:\[\begin{array}{c}
2 & 2n-1 \\
0 & 2n+1 & 2n+2
\end{array}\]
A Certificate of Factorisation

\[P(G, \lambda) = P(G + (0, 2n), \lambda) + P(G/(0, 2n), \lambda) \]
A Certificate of Factorisation

\[= P(G + (0, 2n), \lambda) + P(G/(0, 2n), \lambda) \]
\[= \frac{P(C_{2n+1}, \lambda)P(H_3, \lambda)}{P(K_2, \lambda)} + \frac{P(C_{2n+1}, \lambda)P(C_{2n}, \lambda)}{P(K_1, \lambda)} \]
A Certificate of Factorisation

\[
= \frac{P(C_{2n+1}, \lambda)P(H_3, \lambda)}{P(K_2, \lambda)} + \frac{P(C_{2n+1}, \lambda)P(C_{2n}, \lambda)}{P(K_1, \lambda)}
\]

\[
= P(C_{2n+1}, \lambda) \left(\frac{P(H_3, \lambda)}{P(K_2, \lambda)} + \frac{P(C_{2n}, \lambda)}{P(K_1, \lambda)} \right)
\]
A Certificate of Factorisation

\[
= P(C_{2n+1}, \lambda) \left(\frac{P(H_3, \lambda)}{P(K_2, \lambda)} + \frac{P(C_{2n}, \lambda)}{P(K_1, \lambda)} \right)
\]

\[
= \frac{P(C_{2n+1}, \lambda)}{P(K_3, \lambda)} \left(\frac{P(H_3, \lambda)P(K_3, \lambda)}{P(K_2, \lambda)} + \frac{P(C_{2n}, \lambda)P(K_3, \lambda)}{P(K_1, \lambda)} \right)
\]
A Certificate of Factorisation

\[\frac{P(C_{2n+1}, \lambda)}{P(K_3, \lambda)} \left(\frac{P(H_3, \lambda)P(K_3, \lambda)}{P(K_2, \lambda)} + \frac{P(C_{2n}, \lambda)P(K_3, \lambda)}{P(K_1, \lambda)P(K_2, \lambda)} \right) \]

\[= \frac{P(C_{2n+1}, \lambda)}{P(K_3, \lambda)} \left(\frac{P(H_3, \lambda)P(K_3, \lambda)}{P(K_2, \lambda)} + \frac{P(C_{2n}, \lambda)P(K_3, \lambda)P(K_2, \lambda)}{P(K_1, \lambda)P(K_2, \lambda)} \right) \]
A Certificate of Factorisation

\[A = \frac{P(C_{2n+1}, \lambda)}{P(K_3, \lambda)} \left(\frac{P(H_3, \lambda)P(K_3, \lambda)}{P(K_2, \lambda)} + \frac{P(C_{2n}, \lambda)P(K_3, \lambda)P(K_2, \lambda)}{P(K_1, \lambda)P(K_2, \lambda)} \right) \]

\[= \frac{P(C_{2n+1}, \lambda)}{P(K_3, \lambda)} \left(P(H_5, \lambda) + P(H_6, \lambda) \right) \]
A Certificate of Factorisation

\[\frac{P(C_{2n+1}, \lambda)}{P(K_3, \lambda)} \left(P(H_5, \lambda) + P(H_6, \lambda) \right) = \frac{P(C_{2n+1}, \lambda)P(H_2, \lambda)}{P(K_3, \lambda)} \]

\[
\begin{align*}
C_{2n+1} & = & \text{Cyclic graph with } 2n+1 \text{ vertices} \\
\end{align*}
\]

\[
\begin{align*}
\text{C}_2n+1 & \quad \text{with labels } 0, 1, 2, \ldots, \text{up to } 2n+1 \text{ vertices} \\
\end{align*}
\]

\[
\begin{align*}
\text{C}_2n+1 & \quad \text{with labels } 0, 1, 2, \ldots, \text{up to } 2n+1 \text{ vertices} \\
\end{align*}
\]
$P(G, \lambda) = P(G + uv, \lambda) + P(G/uv, \lambda)$

$$= \frac{P(C_{2n+1}, \lambda)P(H_3, \lambda)}{P(K_2, \lambda)} + \frac{P(C_{2n+1}, \lambda)P(H_4, \lambda)}{P(K_1, \lambda)}$$

$$= P(C_{2n+1}, \lambda) \left(\frac{P(H_3, \lambda)}{P(K_2, \lambda)} + \frac{P(H_4, \lambda)}{P(K_1, \lambda)} \right)$$

$$= \frac{P(C_{2n+1}, \lambda)}{P(K_3, \lambda)} \left(\frac{P(H_3, \lambda)P(K_3, \lambda)}{P(K_2, \lambda)} + \frac{P(H_4, \lambda)P(K_3, \lambda)P(K_2, \lambda)}{P(K_1, \lambda)P(K_2, \lambda)} \right)$$

$$= \frac{P(C_{2n+1}, \lambda)}{P(K_3, \lambda)} (P(H_5, \lambda) + P(H_6, \lambda))$$

$$= \frac{P(C_{2n+1}, \lambda)P(H_2, \lambda)}{P(K_3, \lambda)}$$
Theorem

There exists an infinite family of non-clique-separable graphs \mathcal{G} such that for all $G \in \mathcal{G}$, $P(G, \lambda)$ has a chromatic factorisation.

Note: Every $G \in \mathcal{G}$ satisfies Certificate 1 with $H_1 \cong C_{2n+1}$, $n \geq 2$.

Theorem

Graphs in \mathcal{G} are the only graphs that have a chromatic factorisation in the form of Certificate 1 with $r = 3$ and $H_1 \cong C_{2n+1}$.
Proof (idea)
Some properties used in proof

\(P(G, \lambda) \) has a chromatic factorisation but is not the chromatic polynomial of any clique-separable graph.

Let \(t_G, t_1, t_2 \) be the number of triangles in \(G, H_1 \) and \(H_2 \) respectively. Then

- \(t_G = t_1 + t_2 - \binom{r}{3} \)
- If \(r = 3 \) then
 - \(t_1 = 0 \)
 - \(t_G = t_2 - 1 \)
- In the case where \(P(G, \lambda) \) has a chromatic factorisation in the form of Certificate 1:
 - \(t_G = 0 \)
 - \(t_2 = 1 \)
Proof (idea)
Some properties used in proof

$P(G, \lambda)$ has a chromatic factorisation but is not the chromatic polynomial of any clique-separable graph.

Let t_G, t_1, t_2 be the number of triangles in G, H_1 and H_2 respectively. Then

- $t_G = t_1 + t_2 - \binom{r}{3}$
- If $r = 3$ then
 - $t_1 = 0$
 - $t_G = t_2 - 1$

In the case where $P(G, \lambda)$ has a chromatic factorisation in the form of Certificate 1:

- $t_G = 0$
- $t_2 = 1$
$P(G, \lambda)$ has a chromatic factorisation but is not the chromatic polynomial of any clique-separable graph.

Let t_G, t_1, t_2 be the number of triangles in G, H_1 and H_2 respectively. Then

- $t_G = t_1 + t_2 - \binom{r}{3}$
- If $r = 3$ then
 - $t_1 = 0$
 - $t_G = t_2 - 1$
 - In the case where $P(G, \lambda)$ has a chromatic factorisation in the form of Certificate 1:
 - $t_G = 0$
 - $t_2 = 1$
Proof (idea)
Some observations

- \(H_1 \cong H_3 / uv \)
- \(H_4 \cong H_1 / uv \cong C_{2n} \)

\[\begin{align*}
G & \quad = \quad G + uv + G \setminus uv \\
H_1 & \quad \cong \quad H_3 / uv \\
H_4 & \quad \cong \quad H_1 / uv \cong C_{2n}
\end{align*} \]
Proof (idea)

Now

- $H_1 \cong H_3/uv \cong C_{2n+1}$

Three options for H_3

- $C_{2n+2} + av$
- C_{2n+2}
- $C_{2n+2} + av + bu$

![Diagrams](a), (b), (c)
Three options for H_3

Certificate 1 requires:

- H_5 isomorphic to a K_2-gluing of H_3 and K_3
- $H_5 \setminus e$ isomorphic to H_2
- $P(H_5/ e, \lambda)$ isomorphic to $P(H_6, \lambda) = \frac{P(C_{2n}, \lambda) P(K_3, \lambda) P(K_2, \lambda)}{P(K_2, \lambda) P(K_1, \lambda)}$
H_3 is option (c)

So
- H_3 is isomorphic to $C_{2n+2} + av + bu$
- H_5 is isomorphic to K_2-gluing of H_3 and K_3 on edge bv

Thus
- H_2 is isomorphic to $H_5 \setminus bv$

and
- $G + uv$ is a K_2-gluing of H_3 and C_{2n+1} on the edge uv
- G belongs to the family of graphs
H_3 is option (c)

So

- H_3 is isomorphic to $C_{2n+2} + av + bu$
- H_5 is isomorphic to K_2-gluing of H_3 and K_3 on edge bv

Thus

- H_2 is isomorphic to $H_5 \setminus bv$

and

- $G + uv$ is a K_2-gluing of H_3 and C_{2n+1} on the edge uv
- G belongs to the family of graphs
So

- H_3 is isomorphic to $C_{2n+2} + av + bu$
- H_5 is isomorphic to K_2-gluing of H_3 and K_3 on edge bv

Thus

- H_2 is isomorphic to $H_5 \setminus bv$

and

- $G + uv$ is a K_2-gluing of H_3 and C_{2n+1} on the edge uv
- G belongs to the family of graphs

\begin{figure}
\centering
\includegraphics[width=\textwidth]{graphs.png}
\caption{Graphs H_2, H_3, and H_5}
\end{figure}
So

- H_3 is isomorphic to $C_{2n+2} + av + bu$
- H_5 is isomorphic to K_2-gluing of H_3 and K_3 on edge bv

Thus

- H_2 is isomorphic to $H_5 \setminus bv$

and

- $G + uv$ is a K_2-gluing of H_3 and C_{2n+1} on the edge uv
- G belongs to the family of graphs
So

- H_3 is isomorphic to $C_{2n+2} + av + bu$
- H_5 is isomorphic to K_2-gluing of H_3 and K_3 on edge bv

Thus

- H_2 is isomorphic to $H_5 \setminus bv$

and

- $G + uv$ is a K_2-gluing of H_3 and C_{2n+1} on the edge uv
- G belongs to the family of graphs

\[H_3 \]

\[G + uv \]

\[G \]
Chromatic Factorisation of $G \in \mathcal{G}$.
Further Work

- Identify some properties of non-clique-separable graphs that have chromatic factorisations
- Identify other infinite families of non-clique-separable graphs that have a chromatic factorisation
- Devise certificates to explain different types of chromatic factorisation
- Study chromatic roots using algebraic means