Asymptotic enumeration of contingency tables

Catherine Greenhill

School of Mathematics and Statistics
University of New South Wales

Joint work with Brendan McKay
(Australian National University)
A contingency table is a non-negative integer matrix with given row and column sums:

\[
\begin{bmatrix}
\text{nonnegative integer entries} \\
\begin{array}{cccc}
t_1 & t_2 & \ldots & t_n \\
\end{array}
\end{bmatrix}
\begin{array}{c}
s_1 \\
s_2 \\
\vdots \\
s_m
\end{array}
\]

They are very important in statistics where they are also called frequency tables.

Much interest in efficiently sampling and counting contingency tables. We focus on counting.
Algorithmic results: goal = FPRAS

Constant number of rows:

- Cryan and Dyer (2002), dynamic programming and volume estimation.
- Dyer (2003), dynamic programming algorithm.

“Dense” tables: reduction to volume estimation.

- Dyer, Kannan & Mount (1997)
- Morris (1999)
Asymptotic enumeration.

Let $M(\vec{s}, \vec{t})$ be the number of contingency tables with row sums given by $\vec{s} = (s_1, s_2, \ldots, s_m)$ and column sums given by $\vec{t} = (t_1, t_2, \ldots, t_n)$.

Now, rather than an approximation algorithm, we seek a formula for $M(\vec{s}, \vec{t})$ with relative error $o(1)$ as $m, n \to \infty$.

Define $s = \max_i s_i$, $t = \max_j t_j$, and

$$S = s_1 + \cdots + s_m = t_1 + \cdots + t_n.$$

History

The matrix is semiregular if $s_i = s$ for all i, $t_j = t$ for all j. In this case write $M(m, s; n, t)$ instead of $M(\bar{s}, \bar{t})$.

Read (1958): asymptotics of $M(n, 3; n, 3)$ as $n \to \infty$.

Everett & Stein (1971), Békéssy, Békéssy & Komlós (1972), Bender (1974): asymptotics of $M(m, s; n, t)$ for bounded s, t.

Now allow $s, t \to \infty$ with m, n. Canfield & McKay (2007+) proved an asymptotic formula for $M(m, s; n, t)$ which holds when the matrices are sufficiently dense. Their proof uses analytic methods.
Canfield & McKay conjectured that $M(m, s; n, t)$ can always be written in a certain form. Conjecture proved for $m = n \leq 9$ using exact values (Beck & Pixton 2003), and computationally for several thousand values of $(m, s; n, t)$ with $m, n \leq 30$.

We verified the conjecture in the case that $st = o((mn)^{1/5})$ (sparse matrices). Further, our asymptotic expression for $M(s, t)$ holds for the irregular case when $1 \leq st = o(S^{2/3})$.
Our result

Define

\[\mu = \frac{mn}{S(mn + S)} \sum_i (s_i - S/m)^2, \quad \nu = \frac{mn}{S(mn + S)} \sum_j (t_j - S/n)^2. \]

Suppose that \(m, n \to \infty, S \to \infty \) and \(1 \leq st = o(S^{2/3}) \).

If \((1 + \mu)(1 + \nu) = O(S^{1/3}) \) then \(M(\tilde{s}, \tilde{t}) \) equals

\[
\Pi_{i=1}^{m} \left(\frac{n+s_i-1}{s_i} \right) \Pi_{j=1}^{n} \left(\frac{m+t_j-1}{t_j} \right) \frac{1}{(mn+S-1)} \exp \left(\frac{1}{2} (1 - \mu)(1 - \nu) + O \left(\frac{st}{S^{2/3}} \right) \right)
\]

and otherwise a similar expression holds with the same sized error but with (many) more terms in the \(\exp(\cdot) \).
Interpretation: Write $M(\vec{s}, \vec{t}) = MP_1P_2E$ where

\[
M = \binom{mn + S - 1}{S},
\]

\[
P_1 = M^{-1} \prod_{i=1}^{m} \binom{n + s_i - 1}{s_i}, \quad P_2 = M^{-1} \prod_{j=1}^{n} \binom{m + t_j - 1}{t_j},
\]

\[
E = \exp \left(\frac{1}{2}(1 - \mu)(1 - \nu) + O \left(\frac{st}{S^{2/3}} \right) \right).
\]

Then M is the number of $m \times n$ nonnegative integer matrices whose entries sum to S. In the uniform probability space on these matrices, P_1 is the probability that the row sums equal \vec{s} and P_2 is the probability that the column sums equal \vec{t}.

Hence E is a correction to account for the non-independence of these events!
Let $\mathcal{M}(\bar{s}, \bar{t})$ be the set of contingency tables with row sums \bar{s}, column sums \bar{t}. We need to establish three key facts:

Claim: with probability $1 - O(s^3 t^3 / S^2)$, a randomly chosen element of $\mathcal{M}(\bar{s}, \bar{t})$ has

* no entry greater than 3,
* “not many” entries equal to 3,
* “not many” entries equal to 2.

We prove the key facts using switchings.

Then we borrow calculations from Greenhill, McKay and Wang (2006) (sparse 0-1 matrices) to finish the job.
Key tool

Switchings Theorem (Fack & McKay 2007)
Let $G = (V, E)$ be a finite simple acyclic digraph where each $v \in V$ corresponds to a set $C(v)$, all pairwise disjoint.

Let S be a set of ordered pairs such that for each $(Q, R) \in S$ there exists $vw \in E$ with $Q \in C(v)$, $R \in C(w)$.

Also take positive functions $a, b : V \to \mathbb{R}$ such that

$|\{(Q, R) \in S \mid Q \in C(v)\}| \geq a(v)|C(v)|,$

$|\{(Q, R) \in S \mid R \in C(v)\}| \leq b(v)|C(v)|.$
...Let \(\emptyset \neq Y \subseteq V \). Then there exists a directed path \(v_1, \ldots, v_k \) in \(G \) with \(v_1 \in Y \), where \(v_k \) is a sink, such that

\[
\frac{\sum_{v \in Y} |C(v)|}{\sum_{v \in V} |C(v)|} \leq \frac{\sum_{v_i \in Y} N(v_i)}{\sum_{1 \leq i \leq k} N(v_i)}
\]

where

\[
N(v_1) = 1, \quad N(v_i) = \frac{a(v_1)a(v_2)\ldots a(v_{i-1})}{b(v_2)b(v_3)\ldots b(v_i)}, \quad 2 \leq i \leq k.
\]
Our switchings

For $D \geq 2$ define a D-switching:

$$Q = \begin{pmatrix} D & 0 & 0 & \ldots & 0 \\ 0 & q_1 & * & \ldots & * \\ 0 & * & q_2 & \ldots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & * & * & \ldots & q_D \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & 1 & \ldots & 1 \\ 1 & q_1 - 1 & * & \ldots & * \\ 1 & * & q_2 - 1 & \ldots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & * & * & \ldots & q_D - 1 \end{pmatrix} = R$$

Here $q_i \not\in \{0, D + 1\}$ for $1 \leq i \leq D$. A D-switching preserves all row and column sums as well as the number of entries greater than D. The number of entries equal to D is reduced by at least 1 and at most $D + 1$.
The reverse operation is called (wait for it) a reverse \(D \)-switching.

For \(k \geq 1 \) let \(S_k = \sum_i [s_i]_k, T_k = \sum_j [t_j]_k \).

Lemma. Fix \(D \geq 2 \) and suppose that \(Q \in \mathcal{M}(\vec{s}, \vec{t}) \) has at least \(K \geq 2st \) positive entries not greater than \(D \) and at least \(J \) entries equal to \(D \). Then there are at least \(J(K - 2st)^D \) \(D \)-switchings and at most \(S_D T_D \) reverse \(D \)-switchings which can be applied to \(Q \).

(This gives the functions \(a(v), b(v) \) which we need for Fack & McKay's Switchings Theorem.)
Lemma. Let \mathcal{U}_1 be the set of all matrices in $\mathcal{M}(\bar{s}, \bar{t})$ with at least one entry greater than 3. Then

$$\frac{|\mathcal{U}_1|}{\mathcal{M}(\bar{s}, \bar{t})} = O \left(\frac{s^3 t^3}{s^2} \right).$$

Proof. Let $\Delta = \min\{s, t\}$ be the largest possible entry. We apply the following argument for $D = \Delta, \Delta - 1, \ldots, 4$ to show that very few matrices have largest entry equal to D.

Define $\mathcal{M}_D(j)$ to be the set of matrices in $\mathcal{M}(\bar{s}, \bar{t})$ with exactly j entries equal to D and none greater. Also let

$$\mathcal{M}_D(> 0) = \bigcup_{j > 0} \mathcal{M}_D(j).$$

Then $\mathcal{M}_{D+1}(0) = \mathcal{M}_D(0) \cup \mathcal{M}_D(> 0)$.
Fix D with $4 \leq D \leq \Delta$. We wish to bound

$$\frac{|\mathcal{M}_D(> 0)|}{M(s, t)} \leq \frac{|\mathcal{M}_D(> 0)|}{|\mathcal{M}_{D+1}(0)|}.$$

Take the digraph with vertex set $V = \{v_0, v_1, \ldots\}$ (where v_j is associated with $C(v_j) = \mathcal{M}_D(j)$) and edge set $E = \{v_jv_i \mid j - D - 1 \leq i \leq j - 1\}$.

Let $S = \{(Q, R) \mid R \text{ can be obtained from } Q \text{ using a } D\text{-switching}\}$. Take $Y = \{v_1, v_2, \ldots\} \subseteq V$.

Using the previous lemma, take $a(v_j) = j(S/D - 2st)^D$, $b(v_j) = S_DT_D$ and note $S_DT_D > 0$ since $D \leq \Delta$.

Then the **Switchings Theorem** says there exists a directed path \(v_{t_1}, v_{t_2}, \ldots, v_{t_q}\) where \(t_1 > t_2 > \cdots > t_q = 0\) (as \(v_0\) is the only sink) and \(q > 1\), such that

\[
\frac{|\mathcal{M}_D(> 0)|}{|\mathcal{M}_{D+1}(0)|} = \frac{\sum_{v \in Y} |C(v)|}{\sum_{v \in V} |C(v)|} \leq \frac{N(v_{t_{q-1}}) + \cdots + N(v_{t_1})}{N(v_{t_q}) + \cdots + N(v_{t_1})} \\
\leq \max_{2 \leq i \leq q} \frac{N(v_{t_{i-1}})}{N(v_{t_i})} \\
= \max_{2 \leq i \leq q} \frac{b(\mathcal{M}_D(t_i))}{a(\mathcal{M}_D(t_{i-1}))} \\
= \frac{S_D T_D}{t_{q-1} (S/D - 2s t)^D} \\
\leq \frac{S_D T_D}{(S/D - 2s t)^D} =: \xi_D
\]
Now

$$\xi_4 = \frac{S_4 T_4}{(S/4 - 2st)^4} \leq \frac{s^3 t^3 S^2}{(S/4 - 2st)^4} = O(s^3 t^3 / S^2)$$

and $\xi_{D+1} / \xi_D = o(1)$ for $4 \leq D < \Delta$. Hence

$$\frac{|U_1|}{M(s, t)} \leq \sum_{D=4}^{\Delta} \frac{|M_D(>0)|}{|M_{D+1}(0)|} \leq \sum_{D=4}^{\Delta} \xi_D = O\left(\frac{s^3 t^3}{S^2}\right)$$

as required.

The argument to show “not many” entries equal to 2 or 3 is a similar but slightly more delicate application of Fack & McKay’s Switchings Theorem.
Now we have our nice asymptotic formula. But is any of this practical??

NO! It would be a nightmare to calculate the implicit constant in our $O(\cdot)$ error. So we can’t guarantee relative error less than $1 + \varepsilon$ for a given ε.

YES! (Kind of) In the semiregular case, if $st = o((mn)^{1/5})$ then our verification of C& M’s conjecture strongly suggests relative error at most $\exp(4/(m + n))$. (Here we assume only that a $o(1)$ term is at most 1.)

More DATA needed.