Nonparametric Bayesian times series models: infinite HMMs and beyond

Zoubin Ghahramani
University of Cambridge

joint work with
Jurgen van Gael, Yee Whye Teh, Yunus Saatci
Motivation

• Broadly two classes of time series models:
 – fully observed models (e.g. AR, n-gram)
 – hidden state models (e.g. HMM, state-space models)

• Hidden Markov models (HMMs) are widely used, but how do we choose the number of hidden states?
• A non-parametric Bayesian approach: infinite HMMs.

• A single discrete state variable is a poor representation of the history. Can we do better?
• Factorial HMMs

• Can we make Factorial HMMs non-parametric?
• infinite factorial HMMs and the Markov Indian Buffet Process
Hidden Markov Models

- Core: hidden K-state Markov chain
 - Initial distribution $p(s_0 = 1) = 1$
 - Transition probability $p(s_t = j | s_{t-1} = i) = \pi_{ij}$
- Peripheral: observation model $y_t \sim F(\phi_{s_t})$
- Parameters of the model are K, π, ϕ
Hidden Markov Models

- **Likelihood**

\[
p(y_1, \ldots, y_T, s_1, \ldots, s_T | \pi, \phi) = \prod_{i=1}^{T} p(s_t | s_{t-1}) p(y_t | s_t)
= \prod_{i=1}^{T} \pi_{s_{t-1}, s_t} F(\phi_{s_t})
\]

- **Example**
Choosing the number of hidden states

• How do we choose \(K \), the number of hidden states, in an HMM?
• Can we define a model with an unbounded number of hidden states, and a suitable inference algorithm?
Part I

The Infinite Hidden Markov Model
Infinite Hidden Markov models

Hidden Markov models (HMMs) can be thought of as time-dependent mixtures.

In an HMM with K states, the transition matrix has $K \times K$ elements.

We let $K \to \infty$, this results in an iHMM.

- Introduced in (Beal, Ghahramani and Rasmussen, 2002).
- Teh, Jordan, Beal and Blei (2005) showed that iHMMs can be derived from hierarchical Dirichlet processes, and provided a more efficient Gibbs sampler.
- We have recently derived a much more efficient sampler based on Dynamic Programming (Van Gael, Saatci, Teh, and Ghahramani, 2008).
Alice in Wonderland
Hierarchical Urn Scheme for generating transitions in the iHMM (2002)

- n_{ij} is the number of previous transitions from i to j
- α, β, and γ are hyperparameters
- prob. of transition from i to j proportional to n_{ij}
- with prob. proportional to $\beta \gamma$ jump to a new state
Relating iHMMs to DPMs

• The infinite Hidden Markov Model is closely related to Dirichlet Process Mixture (DPM) models

• This makes sense:
 – HMMs are time series generalisations of mixture models.
 – DPMs are a way of defining mixture models with countably infinitely many components.
 – iHMMs are HMMs with countably infinitely many states.
HMMs as sequential mixtures

What is conditional distribution of y_t?

\[
p(y_t|s_{t-1} = k) = \sum_{s_t = 1}^{K} p(s_t|s_{t-1} = k)p(y_t|s_t)
= \sum_{s_t = 1}^{K} \pi_{k,s_t} F(\phi_{s_t})
\]

\[p(y_t|s_{t-1} = k)\] is a mixture distribution with K components.
Infinite Hidden Markov Models

- We want HMM in the limit of $K \to \infty$

Dirichlet Process

- Specifies a distribution over distributions
- We write $G_k \sim \text{DP}(\alpha, H)$ with
 - concentration parameter α
 - base distribution H
- A DP is discrete with probability 1

$$G_k(\phi) = \sum_{k'=1}^{\infty} \pi_{k'} \delta_{\phi_{k'}}(\phi) \quad \forall k' : \phi_{k'} \sim H,$$

- A DP specifies both mixture weights and parameters
Infinite Hidden Markov Models

- Idea: introduce DP’s
 - identify mixture weights with HMM transitions
 - identify base distribution draws with observation model parameters

\[
p(y_t | s_{t-1} = k) = \sum_{s_t = 1}^{K} \pi_{k,s_t} F(\phi_{s_t})
\]

\[
G_k(\phi) = \sum_{k' = 1}^{\infty} \pi_{k,k'} \delta_{\phi_{k,k'}}(\phi)
\]
Infinite Hidden Markov Models

- Recall $G_0(\phi) = \sum_{k'=1}^{\infty} \beta_{k'} \delta_{\phi_{k'}}(\phi)$ \quad $\forall k' : \phi_{k'} \sim H$, $G_k(\phi) = \sum_{k'=1}^{\infty} \pi_{k,k'} \delta_{\phi_{k'}}(\phi)$

- Generative Model for iHMM

\begin{align*}
\beta & \sim \text{Stick}(\gamma), \\
\phi_k & \sim H, \\
\pi_k & \sim \text{Dirichlet}(\alpha\beta), \\
s_t & \sim \text{Multinomial}(\pi_{s_{t-1}}), \quad (s_0 = 1) \\
y_t & \sim F(\phi_{s_t})
\end{align*}

Teh, Jordan, Beal and Blei (2005) derived iHMMs in terms of Hierarchical Dirichlet Processes.
Efficient inference in iHMMs?
Inference and Learning in HMMs and iHMMs

- **HMM** inference of hidden states $p(s_t | y_1 \ldots y_T, \theta)$:
 - forward backward = dynamic programming = belief propagation

- **HMM** parameter learning:
 - Baum Welch = expectation maximization (EM), or Gibbs sampling (Bayesian)

- **iHMM** inference and learning, $p(s_t, \theta | y_1 \ldots y_T)$:
 - Gibbs Sampling

- This is unfortunate: Gibbs can be very slow for time series!
- Can we use dynamic programming?
Dynamic Programming in HMMs
Forward Backtrack Sampling

1. Compute conditional probabilities
 1. Initialize
 \[p(s_0 = 1) = 1 \]
 \[O(TK^2) \]
 2. For each \(t = 1 \ldots T \)
 \[p(s_t|y_{1:t}) \propto p(y_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1})p(s_{t-1}|y_{1:t-1}) \]
 \[O(TK) \]

2. Sample hidden states
 1. Sample for time \(T \)
 \[p(s_T|y_{1:T}) \]
 \[O(TK) \]
 2. For each \(t = T-1 \ldots 1 \)
 \[p(s_t|s_{t+1}, y_{1:t}) \propto p(s_{t+1}|s_t)p(s_t|y_{1:t}) \]
Beam Sampling

- Can we use Forward-Backtrack for iHMM?
 - No, $O(TK^2)$ with $K \to \infty$ is intractable
- A (bad?) idea:
 - Truncate transition matrix
 - Use dynamic programming to sample s
- This is only approximately correct.

⇒ Beam Sampling = Slice Sampling + Dynamic Programming
Beam Sampling

- Each G_k can be represented as

- Let us introduce an auxiliary variable $u_t \sim \text{Uniform}(0, \pi_{s_{t-1},s_t})$

- u_t partitions up $G_{s_{t-1}}$

Key Observation: since π must sum to 1, only a finite # of sticks $> u_t$.
Auxiliary variables

Note: adding u variables, does not change distribution over other vars.
Beam Sampling

1. Initialize hidden states + parameters
2. While (enough samples)
 1. Sample \(p(u | s) \): \(u_t \sim \text{Uniform}(0, \pi_{s_{t-1}, s_t}) \)
 2. Sample \(p(s | u, y) \) using dynamic programming
 1. Initialize DP \(p(s_0 = 1) = 1 \)
 2. For each \(t = 1 \ldots T \)
 \[
p(s_t | y_{1:t}, u_{1:t}) \propto p(y_t | s_t) \sum_{s_{t-1} : u_t \leq
 \pi_{s_{t-1}, s_t}} p(s_{t-1} | y_{1:t-1}, u_{1:t-1})
 \]
 3. Sample \(T \) \(p(s_T | y_{1:T}) \)
 4. Sample \(t = T-1 \ldots 1 \) \(p(s_t | s_{t+1}, y_{1:t}) \propto p(s_{t+1} | s_t) p(s_t | y_{1:t}) \)
3. Resample \(\pi, \phi, \text{beta}, \gamma, \alpha | s \)
Beam Sampling Properties

- The slice sampler adaptively truncates the infinitely large transition matrix
- Dynamic program allows us to resample the whole sequence s
 - Gibbs sampler only changes one hidden state conditioned on all other states
- The dynamic program needs all parameters to be instantiated
 - Gibbs sampler can collapse variables
 - Beam sampler can do inference for non-conjugate models
- (Hyper)parameter sampling is identical to Gibbs sampling
Experiment I - HMM data

Synthetic data generated by HMM with $K=4$

- Vague: $\alpha \sim \text{Gamma}(1,1); \gamma \sim \text{Gamma}(2,1)$
- Strong: $\alpha \sim \text{Gamma}(6,15); \gamma \sim \text{Gamma}(16,4)$
- Fixed: $\alpha = 0.4; \gamma = 3.8$
Experiment II - Text Prediction

Alice in Wonderland

- training data: 1000 characters from 1st chapter
- 35 possible output characters
- testing data: 1000 subsequent characters

VB-HMM:
- Transition matrix: Dirichlet(4/K, ..., 4/K)
- Emission matrix: Dirichlet(0.3)

iHMM:
- $\alpha \sim \text{Gamma}(4,1)$
- $\gamma \sim \text{Gamma}(1,1)$
- $H \sim \text{Dirichlet}(0.3)$
Experiment III - Changepoint Detection

Well Log (NMR Response) – Change point Detection
- 4050 noisy NMR response measurements
- Output model is Student-t with known scale

Beam sampler output of iHMM after 8000 iterations:
Experiment III - Changepoint Detection

What is probability of two data points in same cluster?

- Left: average over first 5 samples
- Right: average over last 30 samples datapoints

Note: 1) gray areas for beam; 2) slower mixing for Gibbs
Part II

• Hidden Markov models represent the entire history of a sequence using a single state variable s_t

• This seems restrictive...

• It seems more natural to allow many hidden state variables, a “distributed representation” of state.

• …the *Factorial Hidden Markov Model*
Factorial HMMs

- Factorial HMMs (Ghahramani and Jordan, 1997)
- A kind of dynamic Bayesian network.
- Inference using variational methods or sampling.
- Have been in a variety of applications (e.g. condition monitoring, biological sequences, speech recognition).
From factorial HMMs to infinite factorial HMMs?

- A non-parametric version where the number of chains is unbounded?
- In infinite factorial HMM (ifHMM) each chain is binary (van Gael, Teh, and Ghahramani, submitted).
- Based on the Markov extension of the Indian Buffet Process (IBP).
ifHMM Preliminary Experiment: Bars-in-time

Ground truth

Inferred

Data
Bars-in-time data
ifHMM Preliminary Experiment: Bars-in-time
ICA iFHMM (more signals than sources)

True

ICA iFHMM

iICA
ICA iFHMM (fewer signals than sources)

True

ICA iFHMM

iiCA
Conclusion

• HMMs have been widely used.

• iHMMs provide a non-parametric version where the number of states is not bounded a priori.

• Beam sampling provides an efficient exact dynamic programming-based MCMC method.

• ifHMMs extend iHMMs to multiple state variables in parallel.

• Future directions: new models, fast algorithms, and compelling applications.
Appendix:

Indian Buffet Process (IBP)
Binary Matrix Representation of Clustering

- Rows are data points
- Columns are clusters
- Since each data point is assigned to one and only one cluster...
- ...the rows sum to one.
Binary Latent Feature Matrices

- Rows are data points
- Columns are latent features
- We can think of **infinite** binary matrices...
 ...where each data point can now have *multiple* features, so...
 ...the rows can sum to more than one.
Indian Buffet Process

Many Indian restaurants in London offer lunchtime buffets with an apparently infinite number of dishes

- First customer starts at the left of the buffet, and takes a serving from each dish, stopping after a Poisson(\(\alpha\)) number of dishes as her plate becomes overburdened.
- The \(n\)th customer moves along the buffet, sampling dishes in proportion to their popularity, serving himself with probability \(m_k/n\), and trying a Poisson(\(\alpha/n\)) number of new dishes.
- The customer-dish matrix is our feature matrix, \(Z\).

(Griffiths and Ghahramani, 2005)
Indian Buffet Process

\[z_{nk} = 1 \] means object \(n \) has feature \(k \):

\[z_{nk} \sim \text{Bernoulli}(\theta_k) \]

\[\theta_k \sim \text{Beta}(\alpha/K, 1) \]

- Note that \(P(z_{nk} = 1|\alpha) = E(\theta_k) = \frac{\alpha/K}{\alpha/K+1} \), so as \(K \) grows larger the matrix gets sparser.

- So if \(Z \) is \(N \times K \), the expected number of nonzero entries is \(N\alpha/(1 + \alpha/K) < N\alpha \).

- Even in the \(K \to \infty \) limit, the matrix is expected to have a finite number of non-zero entries.
Indian Buffet Process

We can integrate out θ, leaving:

$$P(Z|\alpha) = \int P(Z|\theta)P(\theta|\alpha)d\theta$$

$$= \prod_k \frac{\Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{\Gamma(\frac{\alpha}{K})} \frac{\Gamma(1 + \frac{\alpha}{K})}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

The conditional feature assignments are:

$$P(z_{nk} = 1|z_{-n,k}) = \int_0^1 P(z_{nk}|\theta_k)p(\theta_k|z_{-n,k})\,d\theta_k$$

$$= \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}},$$

where $z_{-n,k}$ is the set of assignments of all objects, not including n, for feature k, and $m_{-n,k}$ is the number of objects having feature k, not including $n.$

We can take limit as $K \to \infty$.

HMM vs iHMM

HMM is fully specified given
• K parameters
• K by K transition matrix

<table>
<thead>
<tr>
<th></th>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>ϕ_3</th>
<th>\cdots</th>
<th>ϕ_K</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>π_{11}</td>
<td>π_{12}</td>
<td>\cdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>π_{12}</td>
<td>\cdots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>π_{KK}</td>
<td></td>
</tr>
</tbody>
</table>
HMM vs iHMM

iHMM is fully specified given an infinite number of DP’s ?!?
Infinite Hidden Markov Models

- Almost there: if H is continuous, all DP’s will have different parameters
 - introduce a DP \((G_o)\) between H and \(G_k\)

- Formally

 \[
 G_0 \sim \text{DP}(\gamma, H) \\
 G_k \sim \text{DP}(\alpha, G_0)
 \]

- Basic idea of two-level urn scheme to share information between states in (Beal, Ghahramani, and Rasmussen, 2002)

- Derived from Hierarchical Dirichlet Processes (Teh, Jordan, Beal & Blei, 2006)
iHMMs and HDPs
Inference and Learning

- Hidden Markov Model
 - Inference (= hidden states)
 - Dynamic Programming
 - Gibbs Sampling
 - Learning (= parameters)
 - Expectation Maximization
 - Gibbs Sampling

- Infinite Hidden Markov Model (so far)
 - Inference (= hidden states): Gibbs sampling
 - Learning (= parameters): Gibbs sampling

- This is unfortunate: Gibbs sampling for time series?!?