Adaptive Designs for Dose Escalation Studies
- A Simulation Study -

Katrin Roth, Bayer Schering Pharma AG Berlin

DEMA2008 Cambridge
August 14, 2008
Background

Traditional Escalation Rule - 3+3-Design

Parametric Approach - Modified 3+3-Design

The Simulation Study - Results
Dose Escalation Studies

- Phase I studies / first in humans
Dose Escalation Studies

- Phase I studies / first in humans
- Small scale, estimation purpose, learn about the dose-response-relationship
Dose Escalation Studies

- Phase I studies / first in humans
- Small scale, estimation purpose, learn about the dose-response-relationship
- Primary interest: safety, not efficacy
Dose Escalation Studies

- Phase I studies / first in humans
- Small scale, estimation purpose, learn about the dose-response-relationship
- Primary interest: safety, not efficacy
- Specific goal: find maximum tolerated dose (MTD)
Typical Dose-Response-Curves and Therapeutic Window

Dose-Response-Curves

- efficacy
- toxicity
- lower bound of therap. window
- upper bound of therap. window

minED, MTD

Dose

probability
Problems and Challenges

- Little / no experience with the drug in humans
Problems and Challenges

- Little / no experience with the drug in humans
- Little / no prior knowledge (e.g. about model and parameters)
Problems and Challenges

- Little / no experience with the drug in humans
- Little / no prior knowledge (e.g. about model and parameters)
- Ethical concerns:
 - Do not treat probands / patients at highly toxic doses
 - Do not treat patients at ineffective doses
 - Use as few probands / patients as necessary
Problems and Challenges

- Little / no experience with the drug in humans
- Little / no prior knowledge (e.g. about model and parameters)
- Ethical concerns:
 - Do not treat probands / patients at highly toxic doses
 - Do not treat patients at ineffective doses
 - Use as few probands / patients as necessary
- and still: get reliable results
3+3-Design

- Define a sequence of doses (usually: modified Fibonacci sequence)
3+3-Design

- Define a sequence of doses (usually: modified Fibonacci sequence)
- Treat cohorts of 3 patients, start with the lowest dose
3+3-Design

- Define a sequence of doses (usually: modified Fibonacci sequence)
- Treat cohorts of 3 patients, start with the lowest dose
- Escalate if the dose is 'safe'
3+3-Design

- Define a sequence of doses (usually: modified Fibonacci sequence)
- Treat cohorts of 3 patients, start with the lowest dose
- Escalate if the dose is 'safe'
- De-escalate if the dose is 'toxic'
3+3-Design

- Define a sequence of doses (usually: modified Fibonacci sequence)
- Treat cohorts of 3 patients, start with the lowest dose
- Escalate if the dose is 'safe'
- De-escalate if the dose is 'toxic'
- Treat more patients at the same dose if the results are indecisive
Underlying Assumptions

- MTD = maximal dose with probability of toxicity < $\frac{1}{3}$
Underlying Assumptions

- MTD = maximal dose with probability of toxicity $< \frac{1}{3}$
- Binary toxicity outcome (dose limiting toxicity or no DLT)
Underlying Assumptions

- MTD $=$ maximal dose with probability of toxicity $< \frac{1}{3}$
- Binary toxicity outcome (dose limiting toxicity or no DLT)
- No parametric model
Underlying Assumptions

- MTD = maximal dose with probability of toxicity $< \frac{1}{3}$
- Binary toxicity outcome (dose limiting toxicity or no DLT)
- No parametric model
- Probability of toxicity is monotonously increasing with dose
Flowchart: 3+3-Design

START

dose step=0

dose escalation:
dose step=dose step+1

Inclusion 1:
patient 1,2,3

0

number of DLTs

> 0

number of patients treated
at dose step+1

< 0

= 0

MTD = dose step

STOP

Inclusion 2:
patient 4,5,6

0

number of DLTs

> 0

= 0

dose reduction:
dose step=dose step-1

3

number of patients in
dose step

6

< 1

total number of DLTs

> 1

< 1

total number of DLTs

< 1

Katrin Roth, Bayer Schering Pharma AG Berlin

Adaptive Designs for Dose Escalation Studies
Study example: 3+3-Design

![Graph showing dose escalation and patients valid for dose escalation decision]
Properties of the 3+3 Designs

- Small number of DLTs

Katrin Roth, Bayer Schering Pharma AG Berlin

Adaptive Designs for Dose Escalation Studies
Properties of the 3+3 Designs

- Small number of DLTs
- Number of patients gets large when MTD is 'far away' from starting dose
Properties of the 3+3 Designs

- Small number of DLTs
- Number of patients gets large when MTD is 'far away' from starting dose
- Probability of finding the correct MTD might be very low (30% and less)
Properties of the 3+3 Designs

- Small number of DLTs
- Number of patients gets large when MTD is 'far away' from starting dose
- Probability of finding the correct MTD might be very low (30% and less)
- Over-estimation unlikely
Properties of the 3+3 Designs

- Small number of DLTs
- Number of patients gets large when MTD is ‘far away’ from starting dose
- Probability of finding the correct MTD might be very low (30% and less)
- Over-estimation unlikely
- Under-estimation much more likely
Properties of the 3+3 Designs

- Small number of DLTs
- Number of patients gets large when MTD is ’far away’ from starting dose
- Probability of finding the correct MTD might be very low (30% and less)
- Over-estimation unlikely
- Under-estimation much more likely

⇒ conservative (safe) and easy to use in practice
Other Recently Proposed Models and Designs

- Bayesian approaches (e.g. CRM)
- Parametric and nonparametric methods
- Binary, categorical and continuous outcomes
- Univariate and bivariate outcomes
Other Recently Proposed Models and Designs

- Bayesian approaches (e.g. CRM)
- Parametric and nonparametric methods
- Binary, categorical and continuous outcomes
- Univariate and bivariate outcomes
- here: compare the 3+3-Design with a Bayesian and an adaptive parametric approach
General Idea

- Select a model appropriate for the dose-response-relationship (e.g. logistic, proportional odds)
General Idea

- Select a model appropriate for the dose-response-relationship (e.g. logistic, proportional odds)
- Use 3+3-Design until parameter estimation is possible in the selected model
General Idea

- Select a model appropriate for the dose-response-relationship (e.g. logistic, proportional odds)
- Use 3+3-Design until parameter estimation is possible in the selected model
- Construct conditional locally optimal design for these parameter estimates
General Idea

- Select a model appropriate for the dose-response-relationship (e.g. logistic, proportional odds)
- Use 3+3-Design until parameter estimation is possible in the selected model
- Construct conditional locally optimal design for these parameter estimates
- Treat next cohort of patients according to this design
General Idea

- Select a model appropriate for the dose-response-relationship (e.g. logistic, proportional odds)
- Use 3+3-Design until parameter estimation is possible in the selected model
- Construct conditional locally optimal design for these parameter estimates
- Treat next cohort of patients according to this design
- Repeat estimation after each cohort and adjust design
Flowchart: Modified 3+3-Design

START

3+3-Design (3 patients per step)

stop criterion for the 3+3-Design met?

MLE exists?

estimate parameters and find new optimal design

include next patient(s)

maximum sample size reached?

STOP

Katrin Roth, Bayer Schering Pharma AG Berlin Adaptive Designs for Dose Escalation Studies
Conditional Locally Optimal Design

- maximize the overall information of the experiment when allocating \(n \) additional subjects to doses within the design region, treating the design points used so far as forced measurements
Conditional Locally Optimal Design

- maximize the overall information of the experiment when allocating n additional subjects to doses within the design region, treating the design points used so far as forced measurements
- denote
 - design points used so far: x_{obs}
 - estimated parameters for the model: $\hat{\theta}$
 - information matrix for design point(s) x and parameters θ: $M(x, \theta)$
 - design region X
maximize the overall information of the experiment when allocating n additional subjects to doses within the design region, treating the design points used so far as forced measurements

denote

- design points used so far: x_{obs}
- estimated parameters for the model: $\hat{\theta}$
- information matrix for design point(s) x and parameters θ: $M(x, \theta)$
- design region X

then: conditional information matrix

$$M_c = M(x_{obs}, \hat{\theta}) + \sum_{i=1}^{n} M(x_i, \hat{\theta}), \quad x_i \in X$$
Conditional Locally Optimal Design

- maximize the overall information of the experiment when allocating n additional subjects to doses within the design region, treating the design points used so far as forced measurements
- denote
 - design points used so far: x_{obs}
 - estimated parameters for the model: $\hat{\theta}$
 - information matrix for design point(s) x and parameters θ: $M(x, \theta)$
 - design region X
- then: conditional information matrix
 $$M_c = M(x_{obs}, \hat{\theta}) + \sum_{i=1}^{n} M(x_i, \hat{\theta}), \quad x_i \in X$$
- maximize function of M_c according to optimality criterion
Parameters to be specified

- Sequence of doses (same as for 3+3-Design)
Parameters to be specified

- Sequence of doses (same as for 3+3-Design)
- Maximum sample size (as stopping rule)
Parameters to be specified

- Sequence of doses (same as for 3+3-Design)
- Maximum sample size (as stopping rule)
- Optimality criterion
Parameters to be specified

- Sequence of doses (same as for 3+3-Design)
- Maximum sample size (as stopping rule)
- Optimality criterion
- Cohort size
Parameters to be specified

- Sequence of doses (same as for 3+3-Design)
- Maximum sample size (as stopping rule)
- Optimality criterion
- Cohort size
- Lower and upper limits for design space
Dose-Response-Scenarios

Different Dose–Response–Scenarios

- Scenario 1
- Scenario 2
- Scenario 3
- Scenario 4
- Scenario 5
- Scenario 6

Katrin Roth, Bayer Schering Pharma AG Berlin

Adaptive Designs for Dose Escalation Studies
Dose-Response-Scenarios

- Scenario 1: based on logistic regression model fit to real data,
 $\mu = 30, \sigma = 7.67 \Rightarrow \text{MTD} = 24.7 \text{ mg}$
Dose-Response-Scenarios

- Scenario 1: based on logistic regression model fit to real data, \(\mu = 30, \sigma = 7.67 \) \(\Rightarrow \) MTD = 24.7 mg
- Scenario 2: based on a 4-category proportional odds model fit to real data, \(\mu = 23.8, \sigma = 8.3 \) \(\Rightarrow \) MTD = 18 mg
Dose-Response-Scenarios

- Scenario 1: based on logistic regression model fit to real data, $\mu = 30, \sigma = 7.67 \Rightarrow MTD=24.7 \text{ mg}$
- Scenario 2: based on a 4-category proportional odds model fit to real data, $\mu = 23.8, \sigma = 8.3 \Rightarrow MTD=18 \text{ mg}$
- Scenario 3: 'safe' scenario, $\mu=50, \sigma=14.43 \Rightarrow MTD=40 \text{ mg}$
- Scenario 4: 'toxic' scenario, $\mu=11, \sigma=4.33 \Rightarrow MTD=8 \text{ mg}$
- Scenario 5: E_{max}-Model with $ED_{50}=50, N=0.7 \Rightarrow MTD=18.6 \text{ mg}$
- Scenario 6: E_{max}-Model with $ED_{50}=28, N=1.6 \Rightarrow MTD=18.2 \text{ mg}$
Dose-Response-Scenarios

- Scenario 1: based on logistic regression model fit to real data, $\mu = 30, \sigma = 7.67 \Rightarrow MTD=24.7$ mg
- Scenario 2: based on a 4-category proportional odds model fit to real data, $\mu = 23.8, \sigma = 8.3 \Rightarrow MTD=18$ mg
- Scenario 3: 'safe' scenario, $\mu=50, \sigma=14.43 \Rightarrow MTD=40$ mg
- Scenario 4: 'toxic' scenario, $\mu = 11, \sigma = 4.33 \Rightarrow MTD=8$ mg
Dose-Response-Scenarios

- Scenario 1: based on logistic regression model fit to real data, \(\mu = 30, \sigma = 7.67 \Rightarrow MTD=24.7 \text{ mg} \)
- Scenario 2: based on a 4-category proportional odds model fit to real data, \(\mu = 23.8, \sigma = 8.3 \Rightarrow MTD=18 \text{ mg} \)
- Scenario 3: 'safe' scenario, \(\mu=50, \sigma=14.43 \Rightarrow MTD=40 \text{ mg} \)
- Scenario 4: 'toxic' scenario, \(\mu = 11, \sigma = 4.33 \Rightarrow MTD=8 \text{ mg} \)
- Scenario 5: \(E_{max} \)-Model with ED50=50, N=0.7 ; \Rightarrow MTD=18.6 \text{ mg} \)
Dose-Response-Scenarios

- Scenario 1: based on logistic regression model fit to real data, $\mu = 30, \sigma = 7.67 \Rightarrow \text{MTD}=24.7 \text{ mg}$
- Scenario 2: based on a 4-category proportional odds model fit to real data, $\mu = 23.8, \sigma = 8.3 \Rightarrow \text{MTD}=18 \text{ mg}$
- Scenario 3: 'safe' scenario, $\mu=50, \sigma=14.43 \Rightarrow \text{MTD}=40 \text{ mg}$
- Scenario 4: 'toxic' scenario, $\mu = 11, \sigma = 4.33 \Rightarrow \text{MTD}=8 \text{ mg}$
- Scenario 5: E_{max}-Model with ED50=50, N=0.7 ; $\Rightarrow \text{MTD}=18.6 \text{ mg}$
- Scenario 6: E_{max}-Model with ED50=28, N=1.6 ; $\Rightarrow \text{MTD}=18.2 \text{ mg}$
Models and Parameter Specifications

▶ used doses (mg): 0.6, 1.2, 2, 3, 4, 5.3, 7, 9, 12.4, 16.53, 22, 29.4
Models and Parameter Specifications

- used doses (mg): 0.6, 1.2, 2, 3, 4, 5.3, 7, 9, 12.4, 16.53, 22, 29.4
- 100,000 simulation runs
Models and Parameter Specifications

- used doses (mg): 0.6, 1.2, 2, 3, 4, 5.3, 7, 9, 12.4, 16.53, 22, 29.4
- 100 000 simulation runs
- underlying model: logistic (both for Bayesian and parametric approach)
Models and Parameter Specifications - Bayesian ADEPT

- a-priori-information: $TD_{20} = 0.6 \text{ mg}$, $TD_{50} = 29.4 \text{ mg}$, amount of prior information equivalent to one observation each
Models and Parameter Specifications - Bayesian ADEPT

- a-priori-information: $TD20 = 0.6 \text{ mg}$, $TD50 = 29.4 \text{ mg}$, amount of prior information equivalent to one observation each
- gain functions:
 - variance gain function
 - patient gain function
Models and Parameter Specifications - Bayesian ADEPT

- a-priori-information: TD20 = 0.6 mg, TD50 = 29.4 mg, amount of prior information equivalent to one observation each
- gain functions:
 - variance gain function
 - patient gain function
- cohort size: 1, 2 (3)
Models and Parameter Specifications - Bayesian ADEPT

- a-priori-information: TD20 = 0.6 mg, TD50 = 29.4 mg, amount of prior information equivalent to one observation each
- gain functions:
 - variance gain function
 - patient gain function
- cohort size: 1, 2 (3)
- stopping criterion: \(\frac{\text{upper limit of 95\% credibility interval}}{\text{lower limit of 95\% credibility interval}} < 5 \)
 or sample size = 60
Models and Parameter Specifications - Parametric Approach

- optimality criterion: D, c (MTD is a linear function of the parameters)
Models and Parameter Specifications - Parametric Approach

- optimality criterion: D, c (MTD is a linear function of the parameters)
- cohort size: 1 (2)
Optimality criterion: D, c (MTD is a linear function of the parameters)

- Cohort size: 1 (2)
- Lower bound for design space: 0
Models and Parameter Specifications - Parametric Approach

- optimality criterion: D, c (MTD is a linear function of the parameters)
- cohort size: 1 (2)
- lower bound for design space: 0
- upper bound for design space:
 - dose level above maximum dose level used so far
 - dose level above current \hat{MTD}
 - never larger than maximum prespecified dose level
Models and Parameter Specifications - Parametric Approach

- optimality criterion: D, c (MTD is a linear function of the parameters)
- cohort size: 1 (2)
- lower bound for design space: 0
- upper bound for design space:
 - dose level above maximum dose level used so far
 - dose level above current \hat{MTD}
 - never larger than maximum prespecified dose level
- maximum sample size $=$ median sample size from 3+3-Design
Results - Scenario 1

Recommendation as MTD in %

<table>
<thead>
<tr>
<th>Dose</th>
<th>≤ 12.4 mg</th>
<th>16.53 mg</th>
<th>22 mg</th>
<th>29.4 mg</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>33.84</td>
<td>27.14</td>
<td>33.08</td>
<td>5.43</td>
<td>0.52</td>
</tr>
<tr>
<td>ADEPT(var,coh=2)</td>
<td>8.61</td>
<td>38.74</td>
<td>45.95</td>
<td>6.69</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=2)</td>
<td>3.21</td>
<td>22.60</td>
<td>57.66</td>
<td>16.53</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(var,coh=1)</td>
<td>8.44</td>
<td>40.31</td>
<td>45.64</td>
<td>5.62</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=1)</td>
<td>5.54</td>
<td>19.94</td>
<td>64.18</td>
<td>13.34</td>
<td>0</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=1)</td>
<td>21.95</td>
<td>24.37</td>
<td>41.75</td>
<td>11.43</td>
<td>0.50</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=2)</td>
<td>23.30</td>
<td>29.99</td>
<td>34.62</td>
<td>11.59</td>
<td>0.50</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=1)</td>
<td>21.99</td>
<td>26.90</td>
<td>39.27</td>
<td>11.33</td>
<td>0.50</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=2)</td>
<td>22.68</td>
<td>29.89</td>
<td>35.48</td>
<td>11.45</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Results - Scenario 1 (cont.)

<table>
<thead>
<tr>
<th></th>
<th>sample size (mean)</th>
<th>DLTs (mean)</th>
<th>patients treated above MTD (mean)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>37.55</td>
<td>3.12</td>
<td>1.16</td>
<td>71.08</td>
</tr>
<tr>
<td>ADEPT(var,coh=2)</td>
<td>29.84</td>
<td>8.48</td>
<td>14.71</td>
<td>25.20</td>
</tr>
<tr>
<td>ADEPT(pat,coh=2)</td>
<td>33.71</td>
<td>9.80</td>
<td>14.01</td>
<td>19.84</td>
</tr>
<tr>
<td>ADEPT(var,coh=1)</td>
<td>28.29</td>
<td>8.06</td>
<td>14.16</td>
<td>25.22</td>
</tr>
<tr>
<td>ADEPT(pat,coh=1)</td>
<td>34.09</td>
<td>10.20</td>
<td>13.87</td>
<td>15.89</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=1)</td>
<td>37.07</td>
<td>4.27</td>
<td>4.81</td>
<td>60.40</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=2)</td>
<td>37.07</td>
<td>4.24</td>
<td>4.01</td>
<td>57.85</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=1)</td>
<td>37.07</td>
<td>4.15</td>
<td>4.18</td>
<td>58.39</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=2)</td>
<td>37.07</td>
<td>4.31</td>
<td>4.05</td>
<td>56.70</td>
</tr>
</tbody>
</table>
Recommendation as MTD in %

<table>
<thead>
<tr>
<th>Dose</th>
<th>≤ 9.3 mg</th>
<th>12.4 mg</th>
<th>16.53 mg</th>
<th>22 mg</th>
<th>29.4 mg</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>62.10</td>
<td>18.10</td>
<td>11.91</td>
<td>4.26</td>
<td>0.16</td>
<td>3.48</td>
</tr>
<tr>
<td>ADEPT(var,coh=2)</td>
<td>19.90</td>
<td>33.87</td>
<td>39.05</td>
<td>7.11</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=2)</td>
<td>9.01</td>
<td>22.83</td>
<td>49.51</td>
<td>17.72</td>
<td>0.94</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(var,coh=1)</td>
<td>17.64</td>
<td>34.40</td>
<td>40.55</td>
<td>7.40</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=1)</td>
<td>8.12</td>
<td>25.12</td>
<td>47.84</td>
<td>18.40</td>
<td>0.53</td>
<td>0</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=1)</td>
<td>35.32</td>
<td>24.32</td>
<td>25.78</td>
<td>8.44</td>
<td>2.83</td>
<td>3.31</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=2)</td>
<td>43.37</td>
<td>21.59</td>
<td>22.97</td>
<td>6.82</td>
<td>1.94</td>
<td>3.31</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=1)</td>
<td>34.35</td>
<td>25.69</td>
<td>25.62</td>
<td>8.22</td>
<td>2.82</td>
<td>3.31</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=2)</td>
<td>41.94</td>
<td>22.23</td>
<td>23.69</td>
<td>6.82</td>
<td>1.97</td>
<td>3.34</td>
</tr>
</tbody>
</table>
Results - Scenario 2 (cont.)

<table>
<thead>
<tr>
<th></th>
<th>sample size (mean)</th>
<th>DLTs (mean)</th>
<th>patients treated above MTD (mean)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>31.17</td>
<td>3.72</td>
<td>0.91</td>
<td>89.65</td>
</tr>
<tr>
<td>ADEPT(var,coh=2)</td>
<td>26.94</td>
<td>7.91</td>
<td>9.12</td>
<td>20.93</td>
</tr>
<tr>
<td>ADEPT(pat,coh=2)</td>
<td>30.43</td>
<td>8.70</td>
<td>8.50</td>
<td>16.72</td>
</tr>
<tr>
<td>ADEPT(var,coh=1)</td>
<td>24.92</td>
<td>7.37</td>
<td>7.78</td>
<td>19.27</td>
</tr>
<tr>
<td>ADEPT(pat,coh=1)</td>
<td>29.09</td>
<td>8.46</td>
<td>8.56</td>
<td>15.84</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=1)</td>
<td>29.91</td>
<td>4.97</td>
<td>4.05</td>
<td>59.98</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=2)</td>
<td>29.91</td>
<td>4.51</td>
<td>3.04</td>
<td>60.48</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=1)</td>
<td>29.91</td>
<td>4.65</td>
<td>3.43</td>
<td>58.25</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=2)</td>
<td>29.91</td>
<td>4.61</td>
<td>3.15</td>
<td>59.17</td>
</tr>
</tbody>
</table>
Results - Scenario 3

Recommendation as MTD in %

<table>
<thead>
<tr>
<th>Dose</th>
<th>≤ 16.53 mg</th>
<th>22 mg</th>
<th>29.4 mg</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>33.54</td>
<td>31.34</td>
<td>33.98</td>
<td>1.14</td>
</tr>
<tr>
<td>ADEPT(var,coh=2)</td>
<td>4.76</td>
<td>2.09</td>
<td>93.15</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=2)</td>
<td>8.05</td>
<td>1.88</td>
<td>90.07</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(var,coh=1)</td>
<td>6.42</td>
<td>2.29</td>
<td>91.30</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=1)</td>
<td>12.11</td>
<td>1.89</td>
<td>86.00</td>
<td>0</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=1)</td>
<td>24.36</td>
<td>21.47</td>
<td>53.04</td>
<td>1.14</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=2)</td>
<td>23.28</td>
<td>16.99</td>
<td>58.59</td>
<td>1.14</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=1)</td>
<td>23.96</td>
<td>20.67</td>
<td>54.23</td>
<td>1.14</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=2)</td>
<td>22.59</td>
<td>16.99</td>
<td>59.27</td>
<td>1.15</td>
</tr>
</tbody>
</table>
Results - Scenario 3 (cont.)

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Sample Size (mean)</th>
<th>DLTs (mean)</th>
<th>Patients Treated Above MTD (mean)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>37.21</td>
<td>2.30</td>
<td>0</td>
<td>153.62</td>
</tr>
<tr>
<td>ADEPT(var, coh=2)</td>
<td>58.47</td>
<td>7.48</td>
<td>0</td>
<td>26.41</td>
</tr>
<tr>
<td>ADEPT(pat, coh=2)</td>
<td>58.56</td>
<td>10.26</td>
<td>0</td>
<td>53.41</td>
</tr>
<tr>
<td>ADEPT(var, coh=1)</td>
<td>58.20</td>
<td>7.37</td>
<td>0</td>
<td>36.48</td>
</tr>
<tr>
<td>ADEPT(pat, coh=1)</td>
<td>58.96</td>
<td>10.62</td>
<td>0</td>
<td>87.13</td>
</tr>
<tr>
<td>mod.3+3 (D, ul=1)</td>
<td>36.61</td>
<td>2.55</td>
<td>0</td>
<td>126.54</td>
</tr>
<tr>
<td>mod.3+3 (D, ul=2)</td>
<td>36.61</td>
<td>2.70</td>
<td>0</td>
<td>104.84</td>
</tr>
<tr>
<td>mod.3+3 (c, ul=1)</td>
<td>36.61</td>
<td>2.59</td>
<td>0</td>
<td>118.22</td>
</tr>
<tr>
<td>mod.3+3 (c, ul=2)</td>
<td>36.60</td>
<td>2.75</td>
<td>0</td>
<td>101.90</td>
</tr>
</tbody>
</table>
Results - Scenario 4

Recommendation as MTD in %

<table>
<thead>
<tr>
<th>Dose</th>
<th>(\leq 4 \text{ mg})</th>
<th>5.3 mg</th>
<th>7 mg</th>
<th>9.3 mg</th>
<th>(\geq 12.4 \text{ mg})</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>60.50</td>
<td>16.3</td>
<td>12.16</td>
<td>3.85</td>
<td>0.29</td>
<td>6.90</td>
</tr>
<tr>
<td>ADEPT(var,coh=2)</td>
<td>15.44</td>
<td>27.11</td>
<td>33.80</td>
<td>20.24</td>
<td>3.40</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=2)</td>
<td>6.97</td>
<td>17.69</td>
<td>37.17</td>
<td>29.97</td>
<td>8.22</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(var,coh=1)</td>
<td>14.41</td>
<td>26.45</td>
<td>33.37</td>
<td>20.46</td>
<td>5.31</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=1)</td>
<td>6.76</td>
<td>18.68</td>
<td>38.64</td>
<td>30.35</td>
<td>5.58</td>
<td>0</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=1)</td>
<td>35.60</td>
<td>21.03</td>
<td>22.53</td>
<td>10.47</td>
<td>3.81</td>
<td>6.67</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=2)</td>
<td>42.97</td>
<td>19.26</td>
<td>18.55</td>
<td>9.36</td>
<td>3.31</td>
<td>6.55</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=1)</td>
<td>35.88</td>
<td>22.14</td>
<td>21.13</td>
<td>10.08</td>
<td>4.22</td>
<td>6.55</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=2)</td>
<td>42.43</td>
<td>19.95</td>
<td>18.19</td>
<td>9.62</td>
<td>3.17</td>
<td>6.64</td>
</tr>
</tbody>
</table>
Results - Scenario 4 (cont.)

<table>
<thead>
<tr>
<th></th>
<th>sample size (mean)</th>
<th>DLTs (mean)</th>
<th>patients treated above MTD (mean)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>22.70</td>
<td>3.52</td>
<td>1.13</td>
<td>15.10</td>
</tr>
<tr>
<td>ADEPT(var,coh=2)</td>
<td>24.05</td>
<td>7.57</td>
<td>6.84</td>
<td>4.88</td>
</tr>
<tr>
<td>ADEPT(pat,coh=2)</td>
<td>33.71</td>
<td>8.44</td>
<td>7.63</td>
<td>6.12</td>
</tr>
<tr>
<td>ADEPT(var,coh=1)</td>
<td>23.05</td>
<td>7.26</td>
<td>7.20</td>
<td>5.35</td>
</tr>
<tr>
<td>ADEPT(pat,coh=1)</td>
<td>26.55</td>
<td>8.03</td>
<td>8.04</td>
<td>4.64</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=1)</td>
<td>21.38</td>
<td>4.03</td>
<td>2.57</td>
<td>10.84</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=2)</td>
<td>21.38</td>
<td>3.68</td>
<td>1.92</td>
<td>11.83</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=1)</td>
<td>21.38</td>
<td>3.70</td>
<td>2.04</td>
<td>11.20</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=2)</td>
<td>21.35</td>
<td>3.72</td>
<td>2.02</td>
<td>11.68</td>
</tr>
</tbody>
</table>
Results - Scenario 5

Recommendation as MTD in %

<table>
<thead>
<tr>
<th>Dose</th>
<th>≤ 9.3 mg</th>
<th>12.4 mg</th>
<th>16.53 mg</th>
<th>22 mg</th>
<th>29.4 mg</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>78.11</td>
<td>5.78</td>
<td>2.80</td>
<td>1.57</td>
<td>0.41</td>
<td>2.07</td>
</tr>
<tr>
<td>ADEPT(var,coh=2)</td>
<td>8.42</td>
<td>18.33</td>
<td>24.14</td>
<td>20.85</td>
<td>16.67</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=2)</td>
<td>9.52</td>
<td>17.94</td>
<td>24.05</td>
<td>21.62</td>
<td>15.86</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(var,coh=1)</td>
<td>10.22</td>
<td>18.09</td>
<td>23.68</td>
<td>20.98</td>
<td>15.82</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=1)</td>
<td>10.68</td>
<td>18.99</td>
<td>23.09</td>
<td>21.27</td>
<td>13.59</td>
<td>0</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=1)</td>
<td>40.68</td>
<td>11.29</td>
<td>12.77</td>
<td>8.39</td>
<td>11.15</td>
<td>2.08</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=2)</td>
<td>52.69</td>
<td>9.18</td>
<td>7.25</td>
<td>5.02</td>
<td>11.15</td>
<td>2.07</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=1)</td>
<td>46.40</td>
<td>11.08</td>
<td>11.16</td>
<td>7.95</td>
<td>9.47</td>
<td>2.07</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=2)</td>
<td>52.22</td>
<td>9.32</td>
<td>7.48</td>
<td>5.07</td>
<td>11.27</td>
<td>2.07</td>
</tr>
</tbody>
</table>
Results - Scenario 5 (cont.)

<table>
<thead>
<tr>
<th></th>
<th>sample size (mean)</th>
<th>DLTs (mean)</th>
<th>patients treated above MTD (mean)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>26.33</td>
<td>3.56</td>
<td>0.06</td>
<td>140.73</td>
</tr>
<tr>
<td>ADEPT(var,coh=2)</td>
<td>42.45</td>
<td>12.36</td>
<td>22.36</td>
<td>52.29</td>
</tr>
<tr>
<td>ADEPT(pat,coh=2)</td>
<td>41.74</td>
<td>12.47</td>
<td>18.61</td>
<td>52.28</td>
</tr>
<tr>
<td>ADEPT(var,coh=1)</td>
<td>40.63</td>
<td>11.80</td>
<td>20.75</td>
<td>53.58</td>
</tr>
<tr>
<td>ADEPT(pat,coh=1)</td>
<td>39.30</td>
<td>11.84</td>
<td>17.65</td>
<td>50.47</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=1)</td>
<td>24.64</td>
<td>3.55</td>
<td>1.55</td>
<td>99.12</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=2)</td>
<td>24.64</td>
<td>3.54</td>
<td>1.71</td>
<td>113.83</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=1)</td>
<td>24.64</td>
<td>3.45</td>
<td>1.17</td>
<td>102.52</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=2)</td>
<td>24.64</td>
<td>3.58</td>
<td>1.76</td>
<td>113.29</td>
</tr>
</tbody>
</table>
Recommendation as MTD in %

<table>
<thead>
<tr>
<th>Dose</th>
<th>≤ 9.3 mg</th>
<th>12.4 mg</th>
<th>16.53 mg</th>
<th>22 mg</th>
<th>29.4 mg</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>31.83</td>
<td>23.95</td>
<td>13.80</td>
<td>6.33</td>
<td>0.72</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(var,coh=2)</td>
<td>1.98</td>
<td>22.57</td>
<td>42.56</td>
<td>22.29</td>
<td>1.79</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=2)</td>
<td>1.02</td>
<td>20.42</td>
<td>44.45</td>
<td>25.59</td>
<td>2.76</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(var,coh=1)</td>
<td>1.95</td>
<td>23.87</td>
<td>41.92</td>
<td>22.46</td>
<td>1.61</td>
<td>0</td>
</tr>
<tr>
<td>ADEPT(pat,coh=1)</td>
<td>1.07</td>
<td>23.18</td>
<td>41.94</td>
<td>25.26</td>
<td>2.16</td>
<td>0</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=1)</td>
<td>17.39</td>
<td>18.02</td>
<td>28.81</td>
<td>20.00</td>
<td>6.98</td>
<td>0</td>
</tr>
<tr>
<td>mod.3+3 (D,ul=2)</td>
<td>19.13</td>
<td>24.42</td>
<td>22.14</td>
<td>12.33</td>
<td>4.67</td>
<td>0</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=1)</td>
<td>17.93</td>
<td>21.17</td>
<td>25.16</td>
<td>17.61</td>
<td>6.30</td>
<td>0</td>
</tr>
<tr>
<td>mod.3+3 (c,ul=2)</td>
<td>19.09</td>
<td>24.53</td>
<td>22.04</td>
<td>12.47</td>
<td>4.64</td>
<td>0</td>
</tr>
</tbody>
</table>
Results - Scenario 6 (cont.)

<table>
<thead>
<tr>
<th></th>
<th>sample size (mean)</th>
<th>DLTs (mean)</th>
<th>patients treated above MTD (mean)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+3-Design</td>
<td>34.34</td>
<td>3.45</td>
<td>0.21</td>
<td>57.42</td>
</tr>
<tr>
<td>ADEPT(var, coh=2)</td>
<td>27.19</td>
<td>7.96</td>
<td>12.39</td>
<td>19.99</td>
</tr>
<tr>
<td>ADEPT(pat, coh=2)</td>
<td>31.37</td>
<td>9.40</td>
<td>12.40</td>
<td>19.70</td>
</tr>
<tr>
<td>ADEPT(var, coh=1)</td>
<td>25.60</td>
<td>7.50</td>
<td>10.94</td>
<td>19.66</td>
</tr>
<tr>
<td>ADEPT(pat, coh=1)</td>
<td>30.01</td>
<td>9.07</td>
<td>12.11</td>
<td>19.44</td>
</tr>
<tr>
<td>mod.3+3 (D, ul=1)</td>
<td>34.06</td>
<td>4.47</td>
<td>4.46</td>
<td>47.99</td>
</tr>
<tr>
<td>mod.3+3 (D, ul=2)</td>
<td>34.06</td>
<td>4.17</td>
<td>3.40</td>
<td>48.41</td>
</tr>
<tr>
<td>mod.3+3 (c, ul=1)</td>
<td>34.40</td>
<td>4.10</td>
<td>1.53</td>
<td>47.08</td>
</tr>
<tr>
<td>mod.3+3 (c, ul=2)</td>
<td>34.40</td>
<td>4.25</td>
<td>1.99</td>
<td>49.51</td>
</tr>
</tbody>
</table>
Conclusions

- Bayesian ADEPT has highest 'hit rate' but also highest risk for patients
Conclusions

- Bayesian ADEPT has highest 'hit rate' but also highest risk for patients
 ⇒ not recommendable to use in practice when prior information is not available
Conclusions

- Bayesian ADEPT has highest 'hit rate' but also highest risk for patients
 ⇒ not recommendable to use in practice when prior information is not available
- 3+3-Design is most conservative, risk for patients is lowest
Conclusions

- Bayesian ADEPT has highest 'hit rate' but also highest risk for patients
 ⇒ not recommendable to use in practice when prior information is not available

- 3+3-Design is most conservative, risk for patients is lowest
 ⇒ safe to use, but high chance of underestimating the MTD
Conclusions

- Bayesian ADEPT has highest 'hit rate' but also highest risk for patients
 ⇒ not recommendable to use in practice when prior information is not available
- 3+3-Design is most conservative, risk for patients is lowest
 ⇒ safe to use, but high chance of underestimating the MTD
- Parametric modification of 3+3-Design has better 'hit rate' and only slightly increased risk for patients
Conclusions

- Bayesian ADEPT has highest 'hit rate' but also highest risk for patients
 ⇒ not recommendable to use in practice when prior information is not available

- 3+3-Design is most conservative, risk for patients is lowest
 ⇒ safe to use, but high chance of underestimating the MTD

- Parametric modification of 3+3-Design has better 'hit rate'
 and only slightly increased risk for patients
 ⇒ promising alternative
Future Work

- stopping rule: length of confidence interval for MTD
Future Work

- stopping rule: length of confidence interval for MTD
- fit proportional odds model (4 categories) instead of logistic model
References

- Gerke, O (2005): Optimal Phase I oncology trial design, Schering AG, First Clinical Statistics Europe Meeting
Thank you for your attention!

Questions?