Random Walks in Random Environments

Ofer Zeitouni

University of Minnesota
and
Weizmann Institute

December 2008
RWRE in \mathbb{Z}^d

An *environment* is a collection of probability distributions indexed by sites: $\omega = \{\omega(x, y)\}_{x, y \in \mathbb{Z}^d}$, such that

$$\sum_{y \in \mathbb{Z}^d} \omega(x, y) = 1, \quad \forall x \in \mathbb{Z}^d.$$

Fix an environment ω. X_n a random walk: $X_0 = 0$, and

$$P_\omega(X_{n+1} = x + y | X_n = x) := \omega(x, y).$$

In Simple Random Walk, $\omega(x, y) = \omega(y)$. For $d \geq 2$, not reversible, i.e. not random conductance P-law of environment. For most of talk today: $d \geq 2$, $\{\omega(x, \cdot)\}_{x \in \mathbb{Z}^d}$ independent, identically distributed (i.i.d.).
An \textit{environment} is a collection of probability distributions indexed by sites: $\omega = \{\omega(x, y)\}_{x, y \in \mathbb{Z}^d}$, such that

$$\sum_{y \in \mathbb{Z}^d} \omega(x, y) = 1, \quad \forall x \in \mathbb{Z}^d.$$

Fix an environment ω.

X_n a random walk: $X_0 = 0$, and

$$P_\omega(X_{n+1} = x + y | X_n = x) := \omega(x, y).$$

In Simple Random Walk, $\omega(x, y) = \omega(y)$.

For $d \geq 2$, not reversible, i.e. not random conductance P-law of environment. For most of talk today:

$d \geq 2$, $\{\omega(x, \cdot)\}_{x \in \mathbb{Z}^d}$ independent, identically distributed (i.i.d.).
An environment is a collection of probability distributions indexed by sites: $\omega = \{\omega(x, y)\}_{x,y \in \mathbb{Z}^d}$, such that

$$\sum_{y \in \mathbb{Z}^d} \omega(x, y) = 1, \quad \forall x \in \mathbb{Z}^d.$$

Fix an environment ω. X_n a random walk: $X_0 = 0$, and

$$P_\omega(X_{n+1} = x + y | X_n = x) := \omega(x, y).$$

In Simple Random Walk, $\omega(x, y) = \omega(y)$. For $d \geq 2$, not reversible, i.e. not random conductance P-law of environment. For most of talk today: $d \geq 2$, $\{\omega(x, \cdot)\}_{x \in \mathbb{Z}^d}$ independent, identically distributed (i.i.d.).
An environment is a collection of probability distributions indexed by sites: \(\omega = \{ \omega(x, y) \} \), such that

\[
\sum_{y \in \mathbb{Z}^d} \omega(x, y) = 1, \quad \forall x \in \mathbb{Z}^d.
\]

Fix an environment \(\omega \).

For \(d \geq 2 \), not reversible, i.e. not random conductance

\(P \)-law of environment. For most of talk today:

\(d \geq 2, \{ \omega(x, \cdot) \} \) independent, identically distributed (i.i.d.).
RWRE is **nearest neighbor** and **uniformly elliptic**:
\[\omega(x, y) \in [\kappa, 1 - \kappa] \] for all \(|y| = 1\), and \(= 0\) otherwise \((\kappa > 0)\).

Goals: Law of Large Numbers, Central Limit Theorems, location of exits from large balls.
Homogenization - large scale behavior same as that for appropriate simple random walk with **effective** fixed transition \(\bar{\omega}(y)\).

Many surprising phenomena!

Large Deviations: not today; Comets - Gantert - Z. ’00 \(d = 1\). Zerner ’98; Varadhan ’02; Rassoul-Agha ’03; Kosygina - Rezakhanlou - Varadhan ’05; Yilmaz ’08; Peterson ’08
Standing assumption and goals

RWRE is nearest neighbor and uniformly elliptic:
\[\omega(x, y) \in [\kappa, 1 - \kappa] \text{ for all } |y| = 1, \text{ and } = 0 \text{ otherwise (} \kappa > 0 \).]

Goals: Law of Large Numbers, Central Limit Theorems, location of exits from large balls.

Homogenization - large scale behavior same as that for appropriate simple random walk with effective fixed transition \(\bar{\omega}(y) \).

Many surprising phenomena!

Large Deviations: not today; Comets - Gantert - Z. '00 \(d = 1 \). Zerner '98; Varadhan '02; Rassoul-Agha '03; Kosygina - Rezakhanlou - Varadhan '05; Yilmaz '08; Peterson '08
Standing assumption and goals

RWRE is **nearest neighbor** and **uniformly elliptic**: \(\omega(x, y) \in [\kappa, 1 - \kappa] \) for all \(|y| = 1 \), and \(= 0 \) otherwise (\(\kappa > 0 \)).

Goals: Law of Large Numbers, Central Limit Theorems, location of exits from large balls.

Homogenization - large scale behavior same as that for appropriate simple random walk with **effective** fixed transition \(\bar{\omega}(y) \).

Many surprising phenomena!

Large Deviations: not today; Comets - Gantert - Z. ’00 \(d = 1 \). Zerner ’98; Varadhan ’02; Rassoul-Agha ’03; Kosygina - Rezakhanlou - Varadhan ’05; Yilmaz ’08; Peterson ’08
Standing assumption and goals

RWRE is **nearest neighbor** and **uniformly elliptic**:
\[\omega(x, y) \in [\kappa, 1 - \kappa] \text{ for all } |y| = 1, \text{ and } = 0 \text{ otherwise (} \kappa > 0 \). \]

Goals: Law of Large Numbers, Central Limit Theorems, location of exits from large balls.

Homogenization - large scale behavior same as that for appropriate simple random walk with **effective** fixed transition \(\bar{\omega}(y) \).

Many surprising phenomena!

Large Deviations: not today; Comets - Gantert - Z. ’00 \(d = 1 \). Zerner ’98; Varadhan ’02; Rassoul-Agha ’03; Kosygina - Rezakhanlou - Varadhan ’05; Yilmaz ’08; Peterson ’08
Consider ball $B_R = \{ x \in \mathbb{Z}^d : |x|_2 \leq R \}$. Define exit measure

$$\Pi_R(y) = P_\omega(\text{RWRE exits } B_R \text{ at } y).$$

Let π_R denote same quantity for simple random walk.

Assume $|\omega(x, e) - \frac{1}{2d}| < \epsilon$ & law of environment is isotropic, ϵ small.

Theorem (Bolthausen-Z. ’07, ’09)

$(\Pi_R - \pi_R)$, *smoothed over distances that grow to infinity with R arbitrarily slowly, converges to 0 in variation norm.*

Holds for $d \geq 3$ (published) and $d = 2$ (harder, in progress).
Summary of recent results

Consider ball $B_R = \{ x \in \mathbb{Z}^d : |x|_2 \leq R \}$. Define exit measure

$$\Pi_R(y) = P_\omega(\text{RWRE exits } B_R \text{ at } y).$$

Let π_R denote same quantity for simple random walk.

Assume $|\omega(x, e) - \frac{1}{2^d}| < \epsilon$ & law of environment is isotropic, ϵ small.

Theorem (Bolthausen-Z. ’07, ’09)

$(\Pi_R - \pi_R)$, smoothed over distances that grow to infinity with R arbitrarily slowly, converges to 0 in variation norm.

Holds for $d \geq 3$ (published) and $d = 2$ (harder, in progress).
Consider ball $B_R = \{ x \in \mathbb{Z}^d : |x|_2 \leq R \}$. Define exit measure

$$\Pi_R(y) = P_\omega(\text{RWRE exits } B_R \text{ at } y).$$

Let π_R denote same quantity for simple random walk.

Assume $|\omega(x, e) - \frac{1}{2d}| < \epsilon$ & law of environment is isotropic, ϵ small.

Theorem (Bolthausen-Z. ’07, ’09)

$(\Pi_R - \pi_R)$, smoothed over distances that grow to infinity with R arbitrarily slowly, converges to 0 in variation norm.

Holds for $d \geq 3$ (published) and $d = 2$ (harder, in progress).
Summary of recent results

Consider ball $B_R = \{ x \in \mathbb{Z}^d : |x|_2 \leq R \}$. Define exit measure

$$\Pi_R(y) = P_\omega(\text{RWRE exits } B_R \text{ at } y).$$

Let π_R denote same quantity for simple random walk.

Assume $|\omega(x, e) - \frac{1}{2d}| < \epsilon$ & law of environment is isotropic, ϵ small.

Theorem (Bolthausen-Z. ’07, ’09)

$(\Pi_R - \pi_R)$, smoothed over distances that grow to infinity with R arbitrarily slowly, converges to 0 in variation norm.

Holds for $d \geq 3$ (published) and $d = 2$ (harder, in progress).
Homogenization for PDE’s

With operator

\[
L_\epsilon = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij} \left(\frac{x}{\epsilon}, \omega \right) \partial_{x_i x_j}^2 + \sum_{i=1}^{d} \frac{1}{\epsilon} b_i \left(\frac{x}{\epsilon}, \omega \right) \partial_{x_i}
\]

\(a, b\) smooth, finite range dependence, isotropic law.

Set, on \((0, \infty) \times \mathbb{R}^d\)

\[
\partial_t u_\epsilon = L_\epsilon u_\epsilon + g, \quad u_\epsilon(0, \cdot) = f.
\]

Theorem (Sznitman, Z. ’06)

\(u_\epsilon\) converges uniformly over compacts to the solution of

\[
\partial_t u_0 = \frac{\sigma^2}{2} \Delta u_0 + g, \quad u_0(0, t) = f.
\]
Homogenization for PDE’s

With operator

\[L_\epsilon = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij} \left(\frac{x}{\epsilon}, \omega \right) \partial^2_{x_i x_j} + \sum_{i=1}^{d} \frac{1}{\epsilon} b_i \left(\frac{x}{\epsilon}, \omega \right) \partial_{x_i} \]

\(a, b \) smooth, finite range dependence, isotropic law.

Set, on \((0, \infty) \times \mathbb{R}^d\)

\[\partial_t u_\epsilon = L_\epsilon u_\epsilon + g, \quad u_\epsilon(0, \cdot) = f. \]

Theorem (Sznitman, Z. ’06)

\(u_\epsilon \) converges uniformly over compacts to the solution of

\[\partial_t u_0 = \frac{\sigma^2}{2} \Delta u_0 + g, \quad u_0(0, t) = f. \]
Homogenization for PDE’s

Operator

\[L_\epsilon = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij} \left(\frac{x}{\epsilon}, \omega \right) \partial_{x_i x_j}^2 + \sum_{i=1}^{d} \frac{1}{\epsilon} b_i \left(\frac{x}{\epsilon}, \omega \right) \partial_{x_i} \]

With no \(1/\epsilon \) before drift, homogenization proved by Yurinskii (1980), based on Alexandrov-Bakelman-Pucci \(L^q \) estimates, \(1 < q < 1 + 1/d \), on invariant measure (also Papanicolau-Varadhan,....).
Homogenization for PDE’s

Operator

\[L_\varepsilon = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij} \left(\frac{x}{\varepsilon}, \omega \right) \partial_{x_i x_j}^2 + \sum_{i=1}^{d} \frac{1}{\varepsilon} b_i \left(\frac{x}{\varepsilon}, \omega \right) \partial_{x_i} \]

With no $1/\varepsilon$ before drift, homogenization proved by Yurinskii (1980), based on Alexandrov-Bakelman-Pucci L^q estimates, $1 < q < 1 + 1/d$, on invariant measure (also Papanicolau-Varadhan,....).
$d = 1$: properties

Reversible model.

Ballistic regime can still be heavy tailed (stable).

Quenched CLT, when exists, only with random centering.
$d = 1$: properties

Reversible model.

Ballistic regime can still be heavy tailed (stable).

Quenched CLT, when exists, only with random centering.
$d = 1$: properties

Reversible model.

Ballistic regime can still be heavy tailed (stable).

Quenched CLT, when exists, only with random centering.
Reversible model.

Ballistic regime can still be heavy tailed (stable).

Quenched CLT, when exists, only with random centering.
$d \geq 2$: Traps

New challenges: not reversible implies no easy transience criterion.

Role of traps changes: first, they can be avoided. Second, they are (probably) weaker: size is volume controlled, effect is diameter controlled.

Heuristics:

$d = 1$: trap can cause exit time from small region at distance ϵn from origin, to be of order $\Omega(n)$ and even $\gg n$.

$d > 1$: trap can only cause exit time to be of order $o(n)$.

\Rightarrow No obvious strategy for walk to remain trapped so much that subdiffusive behaviour occurs. Maybe does not occur?
$d \geq 2$: Traps

New challenges: not reversible implies no easy transience criterion.

Role of traps changes: first, they can be avoided. Second, they are (probably) weaker: size is volume controlled, effect is diameter controlled.

Heuristics:

\[
d = 1: \text{trap can cause exit time from small region at distance } \epsilon n \text{ from origin, to be of order } \Omega(n) \text{ and even } \gg n.
\]

\[
d > 1: \text{trap can only cause exit time to be of order } o(n).
\]

\Rightarrow No obvious strategy for walk to remain trapped so much that subdiffusive behaviour occurs. Maybe does not occur?
$d \geq 2$: Traps

New challenges: not reversible implies no easy transience criterion.

Role of traps changes: first, they can be avoided. Second, they are (probably) weaker: size is volume controlled, effect is diameter controlled.

Heuristics:

$d = 1$: trap can cause exit time from small region at distance ϵn from origin, to be of order $\Omega(n)$ and even $>> n$.

$d > 1$: trap can only cause exit time to be of order $o(n)$.

\Rightarrow No obvious strategy for walk to remain trapped so much that subdiffusive behaviour occurs. Maybe does not occur?
New challenges: not reversible implies no easy transience criterion.

Role of traps changes: first, they can be avoided. Second, they are (probably) weaker: size is volume controlled, effect is diameter controlled.

Heuristics:

\(d = 1\): trap can cause exit time from small region at distance \(\epsilon n\) from origin, to be of order \(\Omega(n)\) and even \(\gg n\).

\(d > 1\): trap can only cause exit time to be of order \(o(n)\).

\(\rightarrow\) No obvious strategy for walk to remain trapped so much that subdiffusive behaviour occurs. Maybe does not occur?
d ≥ 2: Traps

New challenges: not reversible implies no easy transience criterion.

Role of traps changes: first, they can be avoided. Second, they are (probably) weaker: size is volume controlled, effect is diameter controlled.

Heuristics:

\(d = 1\): trap can cause exit time from small region at distance \(\epsilon n\) from origin, to be of order \(\Omega(n)\) and even \(\gg n\).

\(d > 1\): trap can only cause exit time to be of order \(o(n)\).

\(\Rightarrow\) No obvious strategy for walk to remain trapped so much that subdiffusive behaviour occurs. Maybe does not occur?
d ≥ 2: 0-1 law

Embarrassing open problem: 0-1 law.

For $\ell \in S^{d-1}$, set $A_\ell^{\pm} := \{X_n \cdot \ell \to \pm \infty\}$. Prove that $\mathbb{P}(A_\ell^+) \in \{0, 1\}$.

Known - \mathbb{P} i.i.d.:

- $\mathbb{P}(A_\ell^+ \cup A_\ell^-) \in \{0, 1\}$ Kalikow '81.
- 0-1 true for $d = 2$ Zerner-Merkl '02.
- On A_ℓ, deterministic speed Szmitman-Zerner '99, Zerner '02
- 0-1 law \Rightarrow LLN (possibly 0 speed) Zerner '02
- At most two possible limiting values of X_n/n Varadhan '03 by large deviations; Berger '06.
- If two limiting values and $d \geq 5$, one must be zero Berger '06.
Embarrassing open problem: 0-1 law.

For \(\ell \in S^{d-1} \), set \(A_{\ell}^{\pm} := \{ X_n \cdot \ell \to \pm \infty \} \). **Prove that** \(P(A_{\ell}^{\pm}) \in \{0, 1\} \).

Known - \(P \) i.i.d.:
- \(P(A_{\ell}^{+} \cup A_{\ell}^{-}) \in \{0, 1\} \) Kalikow ’81.
- 0-1 true for \(d = 2 \) Zerner-Merkl ’02.
- On \(A_{\ell} \), deterministic speed Sznitman-Zerner ’99, Zerner ’02
- 0-1 law \(\Rightarrow \) LLN (possibly 0 speed) Zerner ’02
- At most two possible limiting values of \(X_n/n \) Varadhan ’03 by large deviations; Berger ’06.
- If two limiting values and \(d \geq 5 \), one must be zero Berger ’06.
Embarrassing open problem: 0-1 law.

For $\ell \in S^{d-1}$, set $A^{\pm}_\ell := \{ X_n \cdot \ell \to \pm\infty \}$. Prove that $\mathbb{P}(A^+_\ell) \in \{0, 1\}$.

Known - \mathcal{P} i.i.d.:

- $\mathbb{P}(A^+_\ell \cup A^-_\ell) \in \{0, 1\}$ Kalikow '81.
- 0-1 true for $d = 2$ Zerner-Merkl '02.
- On A_ℓ, deterministic speed Sznitman-Zerner '99, Zerner '02
- 0-1 law \Rightarrow LLN (possibly 0 speed) Zerner '02
- At most two possible limiting values of X_n/n Varadhan '03 by large deviations; Berger '06.
- If two limiting values and $d \geq 5$, one must be zero Berger '06.
$d \geq 2$: 0-1 law

Embarrassing open problem: 0-1 law.

For $\ell \in S^{d-1}$, set $A_{\ell}^{\pm} := \{X_n \cdot \ell \to \pm \infty\}$. Prove that $\mathbb{P}(A_{\ell}^{+}) \in \{0, 1\}$.

Known - P i.i.d.:
- $\mathbb{P}(A_{\ell}^{+} \cup A_{\ell}^{-}) \in \{0, 1\}$ Kalikow ’81.
- 0-1 true for $d = 2$ Zerner-Merkl ’02.
- On A_{ℓ}, deterministic speed Sznitman-Zerner ’99, Zerner ’02.
- 0-1 law \Rightarrow LLN (possibly 0 speed) Zerner ’02.
- At most two possible limiting values of X_n/n Varadhan ’03 by large deviations; Berger ’06.
- If two limiting values and $d \geq 5$, one must be zero Berger ’06.
Embarrassing open problem: 0-1 law.

For $\ell \in S^{d-1}$, set $A_{\ell}^{\pm} := \{X_n \cdot \ell \to \pm \infty\}$. **Prove that** $\mathbb{P}(A_{\ell}^{+}) \in \{0, 1\}$.

Known - \mathcal{P} i.i.d.:

- $\mathbb{P}(A_{\ell}^{+} \cup A_{\ell}^{-}) \in \{0, 1\}$ Kalikow ’81.
- 0-1 true for $d = 2$ Zerner-Merkl ’02.
- On A_{ℓ}, deterministic speed Sznitman-Zerner ’99, Zerner ’02
- 0-1 law \Rightarrow LLN (possibly 0 speed) Zerner ’02
- At most two possible limiting values of X_n/n Varadhan ’03 by large deviations; Berger ’06.
- If two limiting values and $d \geq 5$, one must be zero Berger ’06.
$d \geq 2$: 0-1 law

Embarrassing open problem: 0-1 law.

For $\ell \in S^{d-1}$, set $A_{\ell}^{\pm} := \{ X_n \cdot \ell \to \pm \infty \}$. **Prove that** $\mathbb{P}(A_{\ell}^+) \in \{0, 1\}$.

Known - P i.i.d.:

- $\mathbb{P}(A_{\ell}^+ \cup A_{\ell}^-) \in \{0, 1\}$ Kalikow ’81.
- 0-1 true for $d = 2$ Zerner-Merkl ’02.
- On A_{ℓ}, deterministic speed Sznitman-Zerner ’99, Zerner ’02
- 0-1 law \Rightarrow LLN (possibly 0 speed) Zerner ’02
- At most two possible limiting values of X_n/n Varadhan ’03 by large deviations; Berger ’06.
- If two limiting values and $d \geq 5$, one must be zero Berger ’06.
$d \geq 2$: 0-1 law

Embarrassing open problem: 0-1 law.

For $\ell \in S^{d-1}$, set $A_{\ell}^{\pm} := \{ X_n \cdot \ell \to \pm \infty \}$. Prove that $\mathbb{P}(A_{\ell}^{+}) \in \{0, 1\}$.

Known - P i.i.d.:

- $\mathbb{P}(A_{\ell}^{+} \cup A_{\ell}^{-}) \in \{0, 1\}$ Kalikow ’81.
- 0-1 true for $d = 2$ Zerner-Merkl ’02.
- On A_{ℓ}, deterministic speed Sznitman-Zerner ’99, Zerner ’02
- 0-1 law \Rightarrow LLN (possibly 0 speed) Zerner ’02
- At most two possible limiting values of X_n/n Varadhan ’03 by large deviations; Berger ’06.
- If two limiting values and $d \geq 5$, one must be zero Berger ’06.
\(d \geq 2: 0\text{-}1 \text{ law} \)

Embarrassing open problem: 0-1 law.

For \(\ell \in S^{d-1} \), set \(A^{\pm}_\ell := \{ X_n \cdot \ell \to \pm \infty \} \). Prove that \(\mathbb{P}(A^{+}_\ell) \in \{0, 1\} \).

Known - \(P \text{ i.i.d.} \):
- \(\mathbb{P}(A^{+}_\ell \cup A^{-}_\ell) \in \{0, 1\} \) Kalikow ’81.
- 0-1 true for \(d = 2 \) Zerner-Merkl ’02.
- On \(A_\ell \), deterministic speed Sznitman-Zerner ’99, Zerner ’02
- 0-1 law \(\Rightarrow \) LLN (possibly 0 speed) Zerner ’02
- At most two possible limiting values of \(X_n/n \) Varadhan ’03 by large deviations; Berger ’06.
- If two limiting values and \(d \geq 5 \), one must be zero Berger ’06.
Embarrassing open problem: 0-1 law.

For $\ell \in S^{d-1}$, set $A_{\ell}^{\pm} := \{X_n \cdot \ell \to \pm \infty\}$. **Prove that $P(A_{\ell}^+) \in \{0, 1\}$.**

Known - P i.i.d.:

- $P(A_{\ell}^+ \cup A_{\ell}^-) \in \{0, 1\}$ Kalikow ’81.
- 0-1 true for $d = 2$ Zerner-Merkl ’02.
- On A_{ℓ}, deterministic speed Sznitman-Zerner ’99, Zerner ’02
- 0-1 law \Rightarrow LLN (possibly 0 speed) Zerner ’02
- At most two possible limiting values of X_n/n Varadhan ’03 by large deviations; Berger ’06.
- If two limiting values and $d \geq 5$, one must be zero Berger ’06.
But: $0 - 1$ law not true for certain ergodic environments: escape in different directions, positive speed.

Zerner-Merkl '02 $d = 2$, not unif. elliptic.
$d \geq 3$, Bramson-Z.-Zerner '05, uniformly elliptic, mixing environment.
$d \geq 2$: breakdown of 0-1 law

But: 0 – 1 law not true for certain ergodic environments: escape in different directions, positive speed.

Zerner-Merkl ’02 $d = 2$, not unif. elliptic.
$d \geq 3$, Bramson-Z.-Zerner ’05, uniformly elliptic, mixing environment.
\(d \geq 2: \text{ballistic behavior and regenerations}\)

Assume: \(\mathbb{P}(A_{\ell}) = 1\) (escape to \(\infty\) in \(\ell\) direction)

Implies existence of special points where walk does not backtrack (regeneration times)

Plot \(X_n \cdot e_1\):

\[\text{Diagram showing the plots at } \tau_1 \text{ and } \tau_2\]
$d \geq 2$: ballistic behavior and regenerations

Assume: $\mathbb{P}(A_\ell) = 1$ (escape to ∞ in ℓ direction)

Implies existence of special points where walk does not backtrack (regeneration times)

Plot $X_n \cdot e_1$:
Assume: $\mathbb{P}(A_\ell) = 1$ (escape to ∞ in ℓ direction)

Implies existence of special points where walk does not backtrack (regeneration times)

Plot $X_n \cdot e_1$:
Assume: $\mathbb{P}(A_\ell) = 1$ (escape to ∞ in ℓ direction)

Regeneration times imply LLN because of i.i.d. structure
Sznitman-Zerner, Zerner ’99, ’02

Sufficient conditions that imply inter-regeneration times have all moments, and therefore CLT Sznitman ’99–’05

Under these conditions, CLT also holds quenched (i.e. conditioned on environment)
QCLT=ACLT (no random centering)
Rassoul-Agha and Seppäläinen ’07, Berger-Z. ’07
Assume: $\mathbb{P}(A_\ell) = 1$ (escape to ∞ in ℓ direction)

Regeneration times imply LLN because of i.i.d. structure

Sznitman-Zerner, Zerner ’99, ’02

Sufficient conditions that imply inter-regeneration times have all moments, and therefore CLT

Sznitman ’99–’05

Under these conditions, CLT also holds quenched (i.e. conditioned on environment)

QCLT=ACL T (no random centering)

Rassoul-Agha and Seppäläinen ’07, Berger-Z. ’07
Assume: $\mathbb{P}(A_\ell) = 1$ (escape to ∞ in ℓ direction)

Regeneration times imply LLN because of i.i.d. structure
Sznitman-Zerner, Zerner ’99, ’02

Sufficient conditions that imply inter-regeneration times have all moments, and therefore CLT Sznitman ’99–’05

Under these conditions, CLT also holds quenched (i.e. conditioned on environment)
QCLT=ACLT (no random centering)
Rassoul-Agha and Seppaläinen ’07, Berger-Z. ’07
\(d \geq 2: \) ballistic behavior and regenerations

Assume: \(\mathbb{P}(A_\ell) = 1 \) (escape to \(\infty \) in \(\ell \) direction)

Regeneration times imply LLN because of i.i.d. structure

Sznitman-Zerner, Zerner ’99, ’02

Sufficient conditions that imply inter-regeneration times have all moments, and therefore CLT *

Sznitman ’99–’05

Under these conditions, CLT also holds quenched (i.e. conditioned on environment)

QCLT=ACL T (no random centering)

Rassoul-Agha and Seppaläinen ’07, Berger-Z. ’07
$d \geq 6$: non ballistic behavior

Can replace regeneration times (in $d \geq 5$) by **cut times**
$d \geq 6$: non ballistic behavior

Can replace regeneration times (in $d \geq 5$) by \textbf{cut times}
$d \geq 5$: non ballistic behavior

For simple random walk, density of cut times for $d \geq 5$ is positive (Erdős and Taylor, 1960). If RWRE has $d_0 \geq 5$ dimensions in which it is a SRW, can use the cut times to generate independence.

Theorem (Bolthausen-Sznitman-Z. ’03)

With above assumptions, get LLN (when $d_0 \geq 5$), CLT when $d_0 \geq 7$, and CLT (quenched, non-random centering) when $d_0 \geq 13$.

Further, there are examples (even in perturbative regime) where $E_P(\text{drift} \cdot e_1) \geq 0$ but $X_n \cdot e_1/n \to -v_1 < 0!$

Static measure \neq dynamic measure (viewed from the particle’s point of view)

\Rightarrow results in summary cannot be true in general without isotropy assumption
$d \geq 5$: non ballistic behavior

For simple random walk, density of cut times for $d \geq 5$ is positive (Erdös and Taylor, 1960). If RWRE has $d_0 \geq 5$ dimensions in which it is a SRW, can use the cut times to generate independence.

**Theorem (Bolthausen-Sznitman-Z. ’03)

With above assumptions, get LLN (when $d_0 \geq 5$), CLT when $d_0 \geq 7$, and CLT (quenched, non-random centering) when $d_0 \geq 13$.

Further, there are examples (even in perturbative regime) where $E_P(\text{drift} \cdot e_1) \geq 0$ but $X_n \cdot e_1/n \to -v_1 < 0$!

Static measure \neq dynamic measure (viewed from the particle’s point of view)

\Rightarrow results in summary cannot be true in general without isotropy assumption
$d \geq 5$: non ballistic behavior

For simple random walk, density of cut times for $d \geq 5$ is positive (Erdős and Taylor, 1960). If RWRE has $d_0 \geq 5$ dimensions in which it is a SRW, can use the cut times to generate independence.

Theorem (Bolthausen-Sznitman-Z. ’03)

With above assumptions, get LLN (when $d_0 \geq 5$), CLT when $d_0 \geq 7$, and CLT (quenched, non-random centering) when $d_0 \geq 13$.

Further, there are examples (even in perturbative regime) where $E_P(\text{drift} \cdot e_1) \geq 0$ but $X_n \cdot e_1 / n \to -\nu_1 < 0$!

Static measure \neq dynamic measure (viewed from the particle’s point of view)

\Rightarrow results in summary cannot be true in general without isotropy assumption
$d \geq 5$: non ballistic behavior

For simple random walk, density of cut times for $d \geq 5$ is positive (Erdös and Taylor, 1960). If RWRE has $d_0 \geq 5$ dimensions in which it is a SRW, can use the cut times to generate independence.

Theorem (Bolthausen-Sznitman-Z. ’03)

With above assumptions, get LLN (when $d_0 \geq 5$), CLT when $d_0 \geq 7$, and CLT (quenched, non-random centering) when $d_0 \geq 13$.

Further, there are examples (even in perturbative regime) where $E_P(\text{drift} \cdot e_1) \geq 0$ but $X_n \cdot e_1/n \to -v_1 < 0!$

Static measure \neq dynamic measure (viewed from the particle’s point of view)

⇒ results in summary cannot be true in general without isotropy assumption
$d \geq 5$: non ballistic behavior

For simple random walk, density of cut times for $d \geq 5$ is positive (Erdős and Taylor, 1960). If RWRE has $d_0 \geq 5$ dimensions in which it is a SRW, can use the cut times to generate independence.

Theorem (Bolthausen-Sznitman-Z. ’03)

With above assumptions, get LLN (when $d_0 \geq 5$), CLT when $d_0 \geq 7$, and CLT (quenched, non-random centering) when $d_0 \geq 13$.

Further, there are examples (even in perturbative regime) where $E_P(\text{drift} \cdot e_1) \geq 0$ but $X_n \cdot e_1 / n \to -v_1 < 0$!

Static measure \neq dynamic measure (viewed from the particle’s point of view)

\Rightarrow results in summary cannot be true in general without isotropy assumption
Homogenization - perturbative regime

Two major (related) complications in applying homogenization technique to general RWRE model:

- Existence of local drift.
- No a-priori knowledge on existence of good invariant measure.

If invariant measure is known, often can address the first point.
Two major (related) complications in applying homogenization technique to general RWRE model:

- Existence of local drift.
- No a-priori knowledge on existence of good invariant measure.

If invariant measure is known, often can address the first point.
Homogenization - perturbative regime

Two major (related) complications in applying homogenization technique to general RWRE model:

- Existence of local drift.
- No a-priori knowledge on existence of good invariant measure.

If invariant measure is known, often can address the first point.
Homogenization - isotropic perturbative regime

- Small disorder $d \geq 3$: $\omega(0, e) = \frac{1}{2d} + \varepsilon k(0, e)$
 P i.i.d. invariant under \mathbb{Z}^d-rotations.

\implies CLT Bricmont-Kupianien ’91

Proof uses (hard) renormalization techniques, hard to penetrate.

Sznitman-Z ’06 present, for diffusions in random environments, an alternative, somewhat clearer proof to BK
still hard (and long...)

A major difficulty: control time spent in spatially small traps
Homogenization - isotropic perturbative regime

- Small disorder \(d \geq 3 \):
 \[\omega(0, e) = \frac{1}{2d} + \varepsilon k(0, e) \]

 \(P \) i.i.d. invariant under \(\mathbb{Z}^d \)-rotations.

\[\implies \text{CLT Bricmont-Kupianien '91} \]

Proof uses (hard) renormalization techniques, hard to penetrate.

Sznitman-Z '06 present, for diffusions in random environments, an alternative, somewhat clearer proof to BK
still hard (and long...)

A major difficulty: control time spent in spatially small traps
Homogenization - isotropic perturbative regime

- Small disorder $d \geq 3$: $\omega(0, e) = \frac{1}{2d} + \varepsilon k(0, e)$
 P i.i.d. invariant under \mathbb{Z}^d-rotations.

\implies CLT Bricmont-Kupianien '91

Proof uses (hard) renormalization techniques, hard to penetrate.

Sznitman-Z '06 present, for diffusions in random environments, an alternative, somewhat clearer proof to BK
still hard (and long...)

A major difficulty: control time spent in spatially small traps
Homogenization - isotropic perturbative regime

- Small disorder $d \geq 3$: $\omega(0, e) = \frac{1}{2d} + \varepsilon k(0, e)$

P i.i.d. invariant under \mathbb{Z}^d-rotations.

\implies CLT Bricmont-Kupianien ’91

Proof uses (hard) renormalization techniques, hard to penetrate.

Sznitman-Z ’06 present, for diffusions in random environments, an alternative, somewhat clearer proof to BK
still hard (and long...)

A major difficulty: control time spent in spatially small traps
Homogenization - isotropic perturbative regime

- Small disorder $d \geq 3$: $\omega(0, e) = \frac{1}{2d} + \varepsilon k(0, e)$
 P i.i.d. invariant under \mathbb{Z}^d-rotations.

\implies CLT Bricmont-Kupianien ’91

Proof uses (hard) renormalization techniques, hard to penetrate.

Sznitman-Z ’06 present, for diffusions in random environments, an alternative, somewhat clearer proof to BK
still hard (and long...)

A major difficulty: control time spent in spatially small traps
Exit measures - isotropic perturbative regime

Goal: investigate exit measure from ball $B_R = \{ z \in \mathbb{Z}^d : |z|_2 \leq R \}$.

\[\Pi_R(A) = P_\omega (\text{RWRE exits } B_R \text{ through } A). \]

\[\pi_R(A) = P(\text{RW exits } B_R \text{ through } A). \]

Theorem (Bolthausen-Z ’07)

(d \geq 3) For any $\delta > 0$ there is an ϵ_0 such that with perturbations $\epsilon < \epsilon_0$ it holds that

\[\limsup_{R \to \infty} \| \Pi_R - \pi_R \|_{T.V.} < \delta \]

and

\[\limsup_{s \to \infty} \limsup_{R \to \infty} \| \Pi_R * \tilde{\pi}_s - \pi_R * \tilde{\pi}_s \|_{T.V.} = 0. \]

Further, the RWRE is transient.

Here $\tilde{\pi}_s$ is exit law from a ball of random radius of order s.
Exit measures - isotropic perturbative regime

Goal: investigate exit measure from ball $B_R = \{z \in \mathbb{Z}^d : |z|^2 \leq R\}$.

$$\Pi_R(A) = P_\omega(\text{RWRE exits } B_R \text{ through } A).$$

$$\pi_R(A) = P(\text{RW exits } B_R \text{ through } A).$$

Theorem (Bolthausen-Z ’07)

$(d \geq 3)$ For any $\delta > 0$ there is an ϵ_0 such that with perturbations $\epsilon < \epsilon_0$ it holds that

$$\limsup_{R \to \infty} \|\Pi_R - \pi_R\|_{T.V.} < \delta$$

and

$$\limsup_{s \to \infty} \limsup_{R \to \infty} \|\Pi_R \ast \tilde{\pi}_s - \pi_R \ast \tilde{\pi}_s\|_{T.V.} = 0.$$

Further, the RWRE is transient.

Here $\tilde{\pi}_s$ is exit law from a ball of random radius of order s.
Exit measures - isotropic perturbative regime - proof

Scales $L_{n+1} = L_n \log(L_n)^3$.

A point x is **bad** at level i, $i = 1, 2, 3$, if

$$\| \Pi_{L_n} - \pi_{L_n} \|_{T.V.} < \delta$$

and

$$(\log L_n)^{-9 + \frac{9(i-1)}{4}} \leq \| \Pi_{L_n} \star \tilde{\pi}_{L_n} - \pi_{L_n} \star \tilde{\pi}_{L_n} \|_{T.V.} < (\log L_n)^{-9 + \frac{9i}{4}}.$$

It is bad at level 4 if either

$$\| \Pi_{L_n} - \pi_{L_n} \|_{T.V.} \geq \delta$$

or

$$\| \Pi_{L_n} \star \tilde{\pi}_{L_n} - \pi_{L_n} \star \tilde{\pi}_{L_n} \|_{T.V.} > (\log L_n)^{-2.25}.$$
Exit measures - isotropic perturbative regime - proof

Scales $L_{n+1} = L_n (\log L_n)^3$.

A point x is **bad** at level i, $i = 1, 2, 3$, if

$$\| \Pi_{L_n} - \pi_{L_n} \|_{T.V.} < \delta$$

and

$$ (\log L_n)^{-9 + \frac{9(i-1)}{4}} \leq \| \Pi_{L_n} \ast \tilde{\pi}_{L_n} - \pi_{L_n} \ast \tilde{\pi}_{L_n} \|_{T.V.} < (\log L_n)^{-9 + \frac{9i}{4}}. $$

It is bad at level 4 if either

$$\| \Pi_{L_n} - \pi_{L_n} \|_{T.V.} \geq \delta$$

or

$$\| \Pi_{L_n} \ast \tilde{\pi}_{L_n} - \pi_{L_n} \ast \tilde{\pi}_{L_n} \|_{T.V.} \geq (\log L_n)^{-2.25}. $$
Exit measures - isotropic perturbative regime - proof

Scales \(L_{n+1} = L_n (\log L_n)^3 \).

A point \(x \) is **bad** at level \(i, i = 1, 2, 3 \), if

\[
\| \Pi_{L_n} - \pi_{L_n} \|_{T.V.} < \delta
\]

and

\[
(\log L_n)^{-9 + \frac{9(i-1)}{4}} \leq \| \Pi_{L_n} \ast \tilde{\pi}_{L_n} - \pi_{L_n} \ast \tilde{\pi}_{L_n} \|_{T.V.} < (\log L_n)^{-9 + \frac{9i}{4}}.
\]

It is bad at level 4 if either

\[
\| \Pi_{L_n} - \pi_{L_n} \|_{T.V.} \geq \delta
\]

or

\[
\| \Pi_{L_n} \ast \tilde{\pi}_{L_n} - \pi_{L_n} \ast \tilde{\pi}_{L_n} \|_{T.V.} > (\log L_n)^{-2.25}.
\]
Basic induction:

\[P(0 \text{ is } i \text{ bad}) \leq \frac{1}{4} \exp \left[-\left(1 - \frac{4 - i}{13}\right)(\log L_n)^2 \right]. \]

Theorem is that induction hypothesis on \(n \leq n_0 \) propagates to \(n_0 + 1 \).
Basic induction:

\[P(0 \text{ is } i \text{ bad}) \leq \frac{1}{4} \exp \left[-(1 - (4 - i)/13)(\log L_n)^2\right]. \]

Theorem is that induction hypothesis on \(n \leq n_0 \) propagates to \(n_0 + 1 \).
Exit measures - propagation of smoothed estimate

Coarse grain walk, keeping coarse graining all the way to the boundary (slightly finer scale near boundary, but still mesoscopic).

- There is only one bad box.
- If no bad box: Perturbation expansion.

\[\prod_{L_{n+1}} * \tilde{\pi}_{L_{n+1}} - \pi_{L_{n+1}} * \tilde{\pi}_{L_{n+1}} = \sum \cdots \sum g_{L_n}(0, y) \Delta^{k_1}(y, y') \pi_{L_n}(y', y_1) \cdots g_{L_n} \Delta^{k_j} \pi_{L_n} \tilde{\pi}_{L_n} \]

where \(g_L \) is green function for (coarse grained) SRW, and \(\Delta \) is difference between (coarse grained) RWRE and SRW.

Linear term \((j = 1)\) is most delicate.
Exit measures - propagation of smoothed estimate

Coarse grain walk, keeping coarse graining all the way to the boundary (slightly finer scale near boundary, but still mesoscopic).

- There is only one bad box.
- If no bad box: Perturbation expansion.

\[
\prod_{L_{n+1}} * \tilde{\pi}_{L_{n+1}} - \pi_{L_{n+1}} * \tilde{\pi}_{L_{n+1}} = \sum \cdots \sum g_{L_n}(0, y) \Delta^{k_1}(y, y') \pi_{L_n}(y', y_1) \cdots g_{L_n} \Delta^{k_j} \pi_{L_n} \tilde{\pi}_{L_n}
\]

where \(g_L \) is green function for (coarse grained) SRW, and \(\Delta \) is difference between (coarse grained) RWRE and SRW.

Linear term \((j = 1) \) is most delicate.
Exit measures - propagation of smoothed estimate

Coarse grain walk, keeping coarse graining all the way to the boundary (slightly finer scale near boundary, but still mesoscopic).

- There is only one bad box.
- If no bad box: Perturbation expansion.

\[
\prod_{L_{n+1}} \ast \tilde{\pi}_{L_{n+1}} - \pi_{L_{n+1}} \ast \tilde{\pi}_{L_{n+1}}
= \sum \cdots \sum g_{L_n}(0, y) \Delta^{k_j}(y, y') \pi_{L_n}(y', y_1) \cdots g_{L_n} \Delta^{k_j} \pi_{L_n} \tilde{\pi}_{L_n}
\]

where \(g_L \) is green function for (coarse grained) SRW, and \(\Delta \) is difference between (coarse grained) RWRE and SRW.

Linear term \((j = 1)\) is most delicate.
Exit measures - propagation of smoothed estimate

Coarse grain walk, keeping coarse graining all the way to the boundary (slightly finer scale near boundary, but still mesoscopic).

- There is only one bad box.
- If no bad box: Perturbation expansion.

\[
\prod_{L_{n+1}} \tilde{\pi}_{L_{n+1}} - \pi_{L_{n+1}} \tilde{\pi}_{L_{n+1}} = \sum \cdots \sum g_{L_n}(0, y) \Delta^{k_1}(y, y') \pi_{L_n}(y', y_1) \cdots g_{L_n} \Delta^{k_j} \pi_{L_n} \tilde{\pi}_{L_n}
\]

where \(g_L \) is green function for (coarse grained) SRW, and \(\Delta \) is difference between (coarse grained) RWRE and SRW.

Linear term \((j = 1)\) is most delicate.
Exit measures - propagation of smoothed estimate

$$\sum g(0, y) \Delta^k(y, y') \pi(y', z) \tilde{\pi}_L$$

Separate according to location of y, using everywhere the smoothing $\Delta \pi$ on which induction hypothesis gives information.

Main term: $k = 1$, y in bulk.

$$\sum g(0, y) \Delta^k(y, y') \pi(y', z) \tilde{\pi}_L = \sum g(0, y) \Delta^k(y, y') [\pi(y', z) - \pi(y, z)] \tilde{\pi}_L$$

$[\cdot - \cdot]$ of order L_k / L_{k+1}, but $\sum g(0, y) = (L_{k+1} / L_k)^2$ - not good!

Expand to second order. Expected value vanishes because of isotropy and fact that exit probability is harmonic function.

To get estimate of non-averaged term, use that sum is over essentially independent variables, and $d \geq 3$.
Exit measures - propagation of smoothed estimate

\[\sum g(0, y) \Delta^k(y, y') \pi(y', z) \tilde{\pi}_L \]

Separate according to location of \(y \), using everywhere the smoothing \(\Delta \pi \) on which induction hypothesis gives information.

Main term: \(k = 1, y \) in bulk.

\[\sum g(0, y) \Delta^k(y, y') \pi(y', z) \tilde{\pi}_L = \sum g(0, y) \Delta^k(y, y') [\pi(y', z) - \pi(y, z)] \tilde{\pi}_L \]

\([\cdot - \cdot]\) of order \(L_k/L_{k+1} \), but \(\sum g(0, y) = (L_{k+1}/L_k)^2 \) - not good!

Expand to second order. Expected value vanishes because of isotropy and fact that exit probability is harmonic function.

To get estimate of non-averaged term, use that sum is over essentially independent variables, and \(d \geq 3 \).
Exit measures - propagation of smoothed estimate

\[\sum g(0, y) \Delta^k(y, y') \pi(y', z) \tilde{\pi}_L \]

Separate according to location of \(y \), using everywhere the smoothing \(\Delta \pi \) on which induction hypothesis gives information.

Main term: \(k = 1, y \) in bulk.

\[\sum g(0, y) \Delta^k(y, y') \pi(y', z) \tilde{\pi}_L = \sum g(0, y) \Delta^k(y, y')[\pi(y', z) - \pi(y, z)] \tilde{\pi}_L \]

[\(\cdot - \cdot \)] of order \(L_k / L_{k+1} \), but \(\sum g(0, y) = (L_{k+1} / L_k)^2 \) - not good!

Expand to second order. Expected value vanishes because of isotropy and fact that exit probability is harmonic function.

To get estimate of non-averaged term, use that sum is over essentially independent variables, and \(d \geq 3 \).
Exit measures - propagation of smoothed estimate

\[\sum g(0, y) \Delta^k(y, y') \pi(y', z) \tilde{\pi}_L \]

Separate according to location of \(y \), using everywhere the smoothing \(\Delta \pi \) on which induction hypothesis gives information.

Main term: \(k = 1, y \) in bulk.

\[\sum g(0, y) \Delta^k(y, y') \pi(y', z) \tilde{\pi}_L = \sum g(0, y) \Delta^k(y, y')[\pi(y', z) - \pi(y, z)] \tilde{\pi}_L \]

[\(\cdot - \cdot \)] of order \(L_k/L_{k+1} \), but \(\sum g(0, y) = (L_{k+1}/L_k)^2 \) - not good!

Expand to second order. Expected value vanishes because of **isotropy** and fact that exit probability is harmonic function.

To get estimate of non-averaged term, use that sum is over essentially independent variables, and \(d \geq 3 \).
Exit measures - propagation of smoothed estimate

\[\sum g(0, y) \Delta^k (y, y') \pi(y', z) \tilde{\pi}_L \]

Separate according to location of \(y \), using everywhere the smoothing \(\Delta \pi \) on which induction hypothesis gives information.

Main term: \(k = 1, y \) in bulk.

\[\sum g(0, y) \Delta^k (y, y') \pi(y', z) \tilde{\pi}_L = \sum g(0, y) \Delta^k (y, y')[\pi(y', z) - \pi(y, z)] \tilde{\pi}_L \]

[\(\cdot - \cdot \)] of order \(L_k/L_{k+1} \), but \(\sum g(0, y) = (L_{k+1}/L_k)^2 \) - not good!

Expand to second order. Expected value vanishes because of **isotropy** and fact that exit probability is harmonic function.

To get estimate of non-averaged term, use that sum is over essentially independent variables, and \(d \geq 3 \).
Exit measures - propagation of smoothed estimate-
k = 1, y in bulk

Back of envelope computation: set \(\ell_k = L_{k+1}/L_k \)

\[
\sum g(0, y) \Delta^k(y, y') [\pi(y', z) - \pi(y, z)] \tilde{\pi}_L
\]

For coarse grained walk, number of terms in expansion is \(\ell^d_k \).

Each (after mean has been substracted) is zero mean and of order

\[
Ca_k \ell_k^{-(d-2)} \ell_k^{-(d-1)} = a_k \ell_k^{-(d-1)}
\]

where \(a_k \) is standard deviation at scale \(L_k \).

Standard deviation of sum is \(a_{k+1} \sim Ca_k \cdot \ell_k^{d/2-d+1} \).

When \(d \geq 3 \): \(a_{k+1} \ll a_k \).

Recent \(d = 2 \) by controlling constant \(C < 1 \).
Exit measures - propagation of smoothed estimate

\(k = 1, y \) in bulk

Back of envelope computation: set \(\ell_k = L_{k+1}/L_k \)

\[
\sum g(0, y) \Delta^k(y, y') [\pi(y', z) - \pi(y, z)] \tilde{\pi}_L
\]

For coarse grained walk, number of terms in expansion is \(\ell_d^d \).

Each (after mean has been substracted) is zero mean and of order

\[
Ca_k \ell_k^{-(d-2)} \ell_k^{-1} = a_k \ell_k^{-(d-1)}
\]

where \(a_k \) is standard deviation at scale \(L_k \).

Standard deviation of sum is \(a_{k+1} \sim Ca_k \cdot \ell_k^{d/2-d+1} \).

When \(d \geq 3 \): \(a_{k+1} \ll a_k \).

Recent \(d = 2 \) by controlling constant \(C < 1 \).
Exit measures - propagation of smoothed estimate

$k = 1$, y in bulk

Back of envelope computation: set $\ell_k = L_{k+1}/L_k$

$$\sum g(0, y) \Delta^k(y, y') [\pi(y', z) - \pi(y, z)] \tilde{\pi}_L$$

For coarse grained walk, number of terms in expansion is ℓ_k^d.

Each (after mean has been substracted) is zero mean and of order

$$Ca_k \ell_k^{-(d-2)} \ell_k^{-1} = a_k \ell_k^{-(d-1)}$$

where a_k is standard deviation at scale L_k.

Standard deviation of sum is $a_{k+1} \sim Ca_k \cdot \ell_k^{d/2-d+1}$.

When $d \geq 3$: $a_{k+1} \ll a_k$.

Recent $d = 2$ by controlling constant $C < 1$.
Exit measures - propagation of smoothed estimate

$k = 1, y$ in bulk

Back of envelope computation: set $\ell_k = L_{k+1}/L_k$

$$
\sum g(0, y) \Delta^k(y, y') [\pi(y', z) - \pi(y, z)] \tilde{\pi}_L
$$

For coarse grained walk, number of terms in expansion is ℓ^d_k.

Each (after mean has been substracted) is zero mean and of order

$$Ca_k \ell_k^{-(d-2)} \ell_k^{-1} = a_k \ell_k^{-(d-1)}$$

where a_k is standard deviation at scale L_k.

Standard deviation of sum is $a_{k+1} \sim Ca_k \cdot \ell_k^{d/2-d+1}$.

When $d \geq 3$: $a_{k+1} \ll a_k$.

Recent $d = 2$ by controlling constant $C < 1$.
Exit measures - propagation of smoothed estimate: $k = 1, y$ in bulk

Back of envelope computation: set $\ell_k = L_{k+1}/L_k$

$$\sum g(0, y) \Delta^k(y, y')[\pi(y', z) - \pi(y, z)]\tilde{\pi}_L$$

For coarse grained walk, number of terms in expansion is ℓ_k^d.

Each (after mean has been subtracted) is zero mean and of order

$$Ca_k \ell_k^{-(d-2)} \ell_k^{-1} = a_k \ell_k^{-(d-1)}$$

where a_k is standard deviation at scale L_k.

Standard deviation of sum is $a_{k+1} \sim Ca_k \cdot \ell_k^{d/2-d+1}$.

When $d \geq 3$: $a_{k+1} << a_k$.

Recent $d = 2$ by controlling constant $C < 1$.
Exit measures - propagation of smoothed estimate

- \(k = 1, \ y \) near boundary: use hitting estimates.
 Slightly more delicate at boundary, but cannot go very far there and
 smooth anyway!

- \(k > 1 \) handled by \(k = 1 + \) non-smoothed estimates.

- handle the single bad box if present by deriving rough Green function
 estimates for environment w/out bad boxes.
Exit measures - propagation of smoothed estimate

- \(k = 1 \), \(y \) near boundary: use hitting estimates. Slightly more delicate at boundary, but cannot go very far there and smooth anyway!

- \(k > 1 \) handled by \(k = 1 + \)non-smoothed estimates.

- handle the single bad box if present by deriving rough Green function estimates for environment w/out bad boxes.
Exit measures - propagation of smoothed estimate

- $k = 1$, y near boundary: use hitting estimates. Slightly more delicate at boundary, but cannot go very far there and smooth anyway!

- $k > 1$ handled by $k = 1 + \text{non-smoothed estimates}$.

- handle the single bad box if present by deriving rough Green function estimates for environment w/out bad boxes.
Exit measures - propagation of non-smoothed estimate

Use perturbation expansion, refining scale all the way to the boundary.

- bulk errors smoothed by π following it and induction hypothesis on smoothed errors.
- There are many “bad” boundary boxes, however have good hitting estimates of them.
Exit measures - propagation of non-smoothed estimate

Use perturbation expansion, refining scale all the way to the boundary.

- bulk errors smoothed by π following it and induction hypothesis on smoothed errors.

- There are many “bad” boundary boxes, however have good hitting estimates of them.
Exit measures - propagation of non-smoothed estimate

Use perturbation expansion, refining scale all the way to the boundary.

- bulk errors smoothed by π following it and induction hypothesis on smoothed errors.
- There are many “bad” boundary boxes, however have good hitting estimates of them.