Complex reflection groups and their associated braid groups and Hecke algebras

Michel Broué

Institut Henri-Poincaré

January 2009
Let K be a characteristic zero field and let V be an r-dimensional K–vector space. Let S be the symmetric algebra of V. Each choice of a basis $(v_1, v_2, ..., v_r)$ of V determines an identification of S with a graded polynomial algebra $S \cong K[v_1, v_2, ..., v_r]$ with $\deg v_i = 1$.

Let G be a finite subgroup of $\text{GL}(V)$. The group G acts on the algebra S, and we let $R := S^G$ denote the subalgebra of G–fixed polynomials.
Let K be a characteristic zero field and let V be an r–dimensional K–vector space. Let S be the symmetric algebra of V.

Michel Broué

Reflection groups, braids, Hecke algebras
Let \(K \) be a characteristic zero field and let \(V \) be an \(r \)-dimensional \(K \)-vector space. Let \(S \) be the symmetric algebra of \(V \). Each choice of a basis \((v_1, v_2, \ldots, v_r)\) of \(V \) determines an identification of \(S \) with a graded polynomial algebra

\[
S \cong K[v_1, v_2, \ldots, v_r] \quad \text{with} \quad \deg v_i = 1.
\]
Let K be a characteristic zero field and let V be an r–dimensional K–vector space. Let S be the symmetric algebra of V. Each choice of a basis (v_1, v_2, \ldots, v_r) of V determines an identification of S with a graded polynomial algebra

$$S \simeq K[v_1, v_2, \ldots, v_r] \quad \text{with} \quad \deg v_i = 1.$$

Let G be a finite subgroup of $\text{GL}(V)$. The group G acts on the algebra S, and we let $R := S^G$ denote the subalgebra of G–fixed polynomials.
In general, R is NOT a polynomial algebra,
In general \(R \) is NOT a polynomial algebra, but there exists a graded polynomial algebra

\[P := K[u_1, u_2, \ldots, u_r] \quad \text{with} \quad \deg u_i = d_i \]
In general R is NOT a polynomial algebra, but there exists a graded polynomial algebra

$$P := K[u_1, u_2, \ldots, u_r] \quad \text{with} \quad \deg u_i = d_i$$

and an integer m, such that
In general \(R \) is NOT a polynomial algebra, but there exists a graded polynomial algebra

\[P := K[u_1, u_2, \ldots, u_r] \text{ with } \deg u_i = d_i \]

and an integer \(m \), such that

\[S = K[v_1, v_2, \ldots, v_r] \]

\[\text{free of rank } m|G| \]

\[R = S^G \]

\[\text{free of rank } m \]

\[P = K[u_1, u_2, \ldots, u_r] \]

\[\text{free of rank } m \]
In general R is NOT a polynomial algebra, but there exists a graded polynomial algebra

$$P := K[u_1, u_2, \ldots, u_r] \text{ with } \deg u_i = d_i$$

and an integer m, such that

$$S = K[v_1, v_2, \ldots, v_r]$$

not free unless...

free of rank $m|G|$

$$R = \mathcal{S}^G \leftarrow \text{not a polynomial algebra unless...}$$

free of rank m

$$P = K[u_1, u_2, \ldots, u_r]$$
Moreover,

\[m \mid G = d_1 d_2 \cdots d_r \]

As a \(PG \)-module, we have \(S \cong (PG)_{m} \).

Example. Consider \(G = \{ (1 0 \ 0 1), (-1 0 \ 0 -1) \} \subset GL_2(K) \).

Denote by \((x, y)\) the canonical basis of \(V = K^2 \).

Then \(S = K[x, y] \) not free but \(\mathbb{P} = K[x^2, y^2] \) free of rank 2.
Moreover,

$$m | G | = d_1 d_2 \cdots d_r$$
Moreover,

1. \(m \mid G \mid = d_1 d_2 \cdots d_r \)
2. As a \(PG \)-module, we have \(S \cong (PG)^m \).
Moreover,

1. $m|G| = d_1 d_2 \cdots d_r$
2. As a PG–module, we have $S \simeq (PG)^m$.

Example.
Moreover,

1. \(m|G| = d_1 d_2 \cdots d_r \)
2. As a \(P \)\(G \)-module, we have \(S \simeq (P \)\(G \)^m \).

Example.

Consider \(G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset \text{GL}_2(K) \).
Moreover,

1. $m|G| = d_1 d_2 \cdots d_r$

2. As a PG–module, we have $S \simeq (PG)^m$.

Example.

Consider $G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset \text{GL}_2(K)$.

Denote by (x, y) the canonical basis of $V = K^2$.
Moreover,

1. \(m \mid G \mid = d_1 d_2 \cdots d_r \)
2. As a \(PG \)-module, we have \(S \simeq (PG)^m \).

Example.

Consider \(G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset \text{GL}_2(K) \).

Denote by \((x, y)\) the canonical basis of \(V = K^2 \). Then
Moreover,

1. \[m|G| = d_1 d_2 \cdots d_r \]

2. As a \(PG \)-module, we have \(S \cong (PG)^m \).

Example.

Consider \(G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset \text{GL}_2(K) \).

Denote by \((x, y)\) the canonical basis of \(V = K^2 \). Then

\[
S = K[x, y] \quad \text{not free}
\]

\[
P = K[x^2, y^2] \quad \text{free of rank 4}
\]

\[
R = S^G = K[x^2, y^2] \oplus K[x^2, y^2]xy \quad \text{free of rank 2}
\]
A finite reflection group (abbreviated frg) on \(K \) is a finite subgroup of \(\text{GL}_K(V) \) (\(V \) a finite dimensional \(K \)-vector space) generated by reflections, i.e., linear maps represented by:

\[
\begin{bmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1
\end{bmatrix}
\]

A finite reflection group on \(\mathbb{R} \) is called a Coxeter group. A finite reflection group on \(\mathbb{Q} \) is called a Weyl group.
A finite reflection group (abbreviated frg) on K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K–vector space) generated by reflections, i.e., linear maps represented by

$$\begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
A finite reflection group (abbreviated frg) on K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by reflections, i.e., linear maps represented by

$$
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

A finite reflection group on \mathbb{R} is called a Coxeter group.
A finite reflection group (abbreviated frg) on K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by reflections, i.e., linear maps represented by

$$
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

A finite reflection group on \mathbb{R} is called a Coxeter group.

A finite reflection group on \mathbb{Q} is called a Weyl group.
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$.

The following assertions are equivalent.

1. G is generated by reflections.
2. The ring $R := S^G$ of G–fixed polynomials is a polynomial ring $K[u_1, u_2, \ldots, u_r]$ in r homogeneous algebraically independant elements.
3. S is a free R–module.

In other words, unless $m = 1$, i.e., $R = P$.
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$. The following assertions are equivalent.
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$. The following assertions are equivalent.

1. G is generated by reflections.
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$. The following assertions are equivalent.

1. G is generated by reflections.

2. The ring $R := S^G$ of G–fixed polynomials is a polynomial ring $K[u_1, u_2, \ldots, u_r]$ in r homogeneous algebraically independant elements.
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$.

The following assertions are equivalent.

1. G is generated by reflections.

2. The ring $R := S^G$ of G–fixed polynomials is a polynomial ring $K[u_1, u_2, \ldots, u_r]$ in r homogeneous algebraically independant elements.

3. S is a free R–module.
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$. The following assertions are equivalent.

1. G is generated by reflections.
2. The ring $R := S^G$ of G–fixed polynomials is a polynomial ring $K[u_1, u_2, \ldots, u_r]$ in r homogeneous algebraically independant elements.
3. S is a free R–module.

In other words, unless...
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$. The following assertions are equivalent.

1. G is generated by reflections.
2. The ring $R := S^G$ of G–fixed polynomials is a polynomial ring $K[u_1, u_2, \ldots, u_r]$ in r homogeneous algebraically independant elements.
3. S is a free R–module.

In other words, unless... $m = 1$, i.e., $R = P$.
\[S = K[v_1, v_2, \ldots, v_r] \]
\[R = S^G \]
\[P = K[u_1, u_2, \ldots, u_r] \]

becomes
\[S = K[v_1, v_2, \ldots, v_r] \]

\[R = S^G \]

\[P = K[u_1, u_2, \ldots, u_r] \]

becomes

\[S = K[v_1, v_2, \ldots, v_r] \]

\[R = S^G = P = K[u_1, u_2, \ldots, u_r] \]
Examples

For $G = S_r$, one may choose

$u_1 = v_1 + \cdots + v_r$

$u_2 = v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r$

\[\cdots \]

$u_r = v_1 v_2 \cdots v_r$

For $G = \langle e^{2\pi i/d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have $S_r = K[x]$ and $R = K[x^d]$.

S_r acts naturally on $V = \mathbb{C}^r = \bigoplus \mathbb{C}v_i$.

Fix $d \geq 2$.

For each coordinate consider the reflection $v_i \mapsto \zeta_d v_i$.

We obtain the wreath product $\mathbb{C}^d \wr S_r$, generated by reflections.

This group is called $G(d, 1, r)$.

For each divisor e of d, there is a normal reflection subgroup $G(d, e, r)$ of $G(d, 1, r)$ of index e.
Examples

- For $G = S_r$, one may choose

\[
\begin{align*}
 u_1 &= v_1 + \cdots + v_r \\
 u_2 &= v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 \vdots & \quad \vdots \\
 u_r &= v_1 v_2 \cdots v_r
\end{align*}
\]
Examples

- For $G = \mathfrak{S}_r$, one may choose

 \[
 \begin{cases}
 u_1 = v_1 + \cdots + v_r \\
 u_2 = v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 \vdots \\
 u_r = v_1 v_2 \cdots v_r
 \end{cases}
 \]

- For $G = \langle e^{2\pi i/d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have

 \[S = K[x] \quad \text{and} \quad R = K[x^d]. \]
Examples

- For $G = \mathfrak{S}_r$, one may choose
 \[
 \begin{align*}
 u_1 &= v_1 + \cdots + v_r \\
 u_2 &= v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 & \vdots \\
 u_r &= v_1 v_2 \cdots v_r
 \end{align*}
 \]

- For $G = \langle e^{2\pi i/d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have
 \[
 S = K[x] \quad \text{and} \quad R = K[x^d].
 \]

- \mathfrak{S}_r acts naturally on $V = \mathbb{C}^r = \bigoplus \mathbb{C}v_i$.

Michel Broué Reflection groups, braids, Hecke algebras
Examples

- For $G = \mathfrak{S}_r$, one may choose
 \[
 \begin{aligned}
 u_1 &= v_1 + \cdots + v_r \\
 u_2 &= v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 &\vdots \\
 u_r &= v_1 v_2 \cdots v_r
 \end{aligned}
 \]

- For $G = \langle e^{2\pi i / d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have
 \[
 S = K[x] \quad \text{and} \quad R = K[x^d].
 \]

- \mathfrak{S}_r acts naturally on $V = \mathbb{C}^r = \bigoplus \mathbb{C}v_i$. Fix $d \geq 2$.\]
Examples

- For $G = \mathfrak{S}_r$, one may choose
 \[
 \begin{align*}
 u_1 &= v_1 + \cdots + v_r \\
 u_2 &= v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 \vdots & \quad \vdots \\
 u_r &= v_1 v_2 \cdots v_r
 \end{align*}
 \]

- For $G = \langle e^{2\pi i / d}\rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have
 \[S = K[x] \quad \text{and} \quad R = K[x^d].\]

- \mathfrak{S}_r acts naturally on $V = \mathbb{C}^r = \bigoplus \mathbb{C}v_i$. Fix $d \geq 2$. For each coordinate consider the reflection $v_i \mapsto \zeta_d v_i$.

Michel Broué
Reflection groups, braids, Hecke algebras
Examples

- For $G = \mathfrak{S}_r$, one may choose
 \[
 \begin{align*}
 u_1 &= v_1 + \cdots + v_r \\
 u_2 &= v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 & \vdots \\
 u_r &= v_1 v_2 \cdots v_r
 \end{align*}
 \]

- For $G = \langle e^{2\pi i/d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have
 \[
 S = K[x] \quad \text{and} \quad R = K[x^d].
 \]

- \mathfrak{S}_r acts naturally on $V = \mathbb{C}^r = \bigoplus \mathbb{C} v_i$. Fix $d \geq 2$. For each coordinate consider the reflection $v_i \mapsto \zeta_d v_i$. We obtain the wreath product $C_d \wr \mathfrak{S}_r$, generated by reflections.
Examples

- For $G = \mathfrak{S}_r$, one may choose

$$
\begin{cases}
 u_1 = v_1 + \cdots + v_r \\
 u_2 = v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 \vdots \\
 u_r = v_1 v_2 \cdots v_r
\end{cases}
$$

- For $G = \langle e^{2\pi i/d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have

$$
S = K[x] \quad \text{and} \quad R = K[x^d].
$$

- \mathfrak{S}_r acts naturally on $V = \mathbb{C}^r = \bigoplus \mathbb{C} v_i$. Fix $d \geq 2$. For each coordinate consider the reflection $v_i \mapsto \zeta_d v_i$. We obtain the wreath product $C_d \wr \mathfrak{S}_r$, generated by reflections. This group is called $G(d, 1, r)$.
Examples

- For $G = \mathfrak{S}_r$, one may choose

\[
\begin{align*}
 u_1 &= v_1 + \cdots + v_r \\
 u_2 &= v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 & \vdots \\
 u_r &= v_1 v_2 \cdots v_r
\end{align*}
\]

- For $G = \langle e^{2\pi i/d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have

\[S = K[x] \quad \text{and} \quad R = K[x^d].\]

- \mathfrak{S}_r acts naturally on $V = \mathbb{C}^r = \bigoplus \mathbb{C} v_i$. Fix $d \geq 2$. For each coordinate consider the reflection $v_i \mapsto \zeta_d v_i$. We obtain the wreath product $C_d \wr \mathfrak{S}_r$, generated by reflections. This group is called $G(d, 1, r)$.

For each divisor e of d, there is a normal reflection subgroup $G(d, e, r)$ of $G(d, 1, r)$ of index e.
Let $G \leq SL_2(C)$ be finite and $g \in G$. Let ζ be an eigenvalue of g. Then $\zeta - 1$ g is a reflection. So, if $G = \langle g_1, \ldots, g_r \rangle$, the group $\langle \zeta - 1 g_1, \ldots, \zeta - 1 g_r \rangle$ is an frg.

Note that for G irreducible, we have $G / Z(G) \in \{D_n, A_4, S_4, A_5\}$. For example, the group $G := \langle (1 \ 0 \ 0 \ \zeta^3), \sqrt{-3} 3(\zeta^3 3) \rangle \leq GL_2(Q(\zeta^3))$, with $\zeta^3 := \exp(2\pi i / 3)$, is a frg of order 72, denoted G_5, isomorphic to $SL_2(3) \times C_3$.

We may choose $u_1 := v_6^1 + 20 v_3^1 v_3^2 - 8 v_6^2$, $u_2 := 3 v_3^1 v_9^2 + 3 v_6^1 v_6^2 + v_9^1 v_3^2 + v_12^2$, with degrees $d_1 = 6$, $d_2 = 12$ (note that $d_1 d_2 = 72 = |G|$).

If $g \in SL_3(C)$ is an involution, then $-g$ is a reflection. Note that A_5, $PSL_2(7)$ and $3A_6$ have faithful 3-dimensional representations and are generated by involutions.
Let $G \leq \text{SL}_2(\mathbb{C})$ be finite and $g \in G$.

So, if $G = \langle g_1, \ldots, g_r \rangle$, the group $\langle \zeta - 1 \rangle g_1, \ldots, \zeta - 1 g_r \rangle$ is an r-frg.

Note that for G irreducible, we have $G/\mathbb{Z}(G) \in \{D_n, A_4, S_4, A_5\}$.

For example, the group $G := \langle (1 0 0 \zeta_3^3), \sqrt{-3} \rangle \langle -\zeta_3^3 \zeta_2^2 3^2 \zeta_2 \rangle \rangle \leq \text{GL}_2(Q(\zeta_3))$, with $\zeta_3 := \exp(2\pi i/3)$, is a 72-frg, denoted G_5, isomorphic to $\text{SL}_2(3) \times \mathbb{C}^3$.

We may choose $u_1 := v_6 + 20 v_3 v_3 - 8 v_6^2$, $u_2 := 3 v_3 v_9 + 3 v_6 v_6 + v_9 v_3 + v_12^2$, with degrees $d_1 = 6$, $d_2 = 12$ (note that $d_1 d_2 = 72 = |G|$).

If $g \in \text{SL}_3(\mathbb{C})$ is an involution, then $-g$ is a reflection.

Note that A_5, $\text{PSL}_2(7)$ and $3 \cdot A_6$ have faithful 3-dimensional representations and are generated by involutions.
Let $G \leq \text{SL}_2(\mathbb{C})$ be finite and $g \in G$. Let ζ be an eigenvalue of g.

So, if $G = \langle g_1, \ldots, g_r \rangle$, the group $\langle \zeta - 1 \rangle \langle g_1 \rangle, \ldots, \langle \zeta - 1 \rangle \langle g_r \rangle \rangle$ is an r-dimensional representation.

Note that for G irreducible, we have $G/\text{Z}(G) \in \{D_n, A_4, S_4, A_5\}$.

For example, the group $G := \langle (1,0) \ 0 \ 0, \sqrt{-3} \ 3 \ 0, -\zeta^3 \ \zeta^2 \ 1 \ 3, \zeta^3 \ 2 \ 1 \ \zeta^2 \rangle \rangle \leq \text{GL}_2(\mathbb{Q}(\zeta^3))$, with $\zeta^3 := \exp(2\pi i/3)$, is a G of order 72, denoted G_5, isomorphic to $\text{SL}_2(3) \times \mathbb{C}_3$.

We may choose $u_1 := v_6 + 20v_3v_2 - 8v_6^2, u_2 := 3v_3v_9^2 + 3v_6v_6^2 + v_9^1v_3 + v_12^2$, with degrees $d_1 = 6, d_2 = 12$ (note that $d_1d_2 = 72 = |G|$).

If $g \in \text{SL}_3(\mathbb{C})$ is an involution, then $-g$ is a reflection.

Note that $A_5, \text{PSL}_2(7)$ and $3A_6$ have faithful 3-dimensional representations and are generated by involutions.
Let $G \leq \text{SL}_2(\mathbb{C})$ be finite and $g \in G$. Let ζ be an eigenvalue of g. Then $\zeta^{-1}g$ is a reflection.
Let \(G \leq \text{SL}_2(\mathbb{C}) \) be finite and \(g \in G \). Let \(\zeta \) be an eigenvalue of \(g \). Then \(\zeta^{-1}g \) is a reflection.

So, if \(G = \langle g_1, \ldots, g_r \rangle \), the group \(\langle \zeta_1^{-1}g_1, \ldots, \zeta_r^{-1}g_r \rangle \) is an frg.
Let $G \leq \text{SL}_2(\mathbb{C})$ be finite and $g \in G$. Let ζ be an eigenvalue of g. Then $\zeta^{-1}g$ is a reflection.

- So, if $G = \langle g_1, \ldots, g_r \rangle$, the group $\langle \zeta_1^{-1}g_1, \ldots, \zeta_r^{-1}g_r \rangle$ is an frg.
- Note that for G irreducible, we have $G/Z(G) \in \{D_n, A_4, S_4, A_5\}$.
Let $G \leq \text{SL}_2(\mathbb{C})$ be finite and $g \in G$. Let ζ be an eigenvalue of g. Then $\zeta^{-1}g$ is a reflection.

So, if $G = \langle g_1, \ldots, g_r \rangle$, the group $\langle \zeta_1^{-1}g_1, \ldots, \zeta_r^{-1}g_r \rangle$ is an frg.

Note that for G irreducible, we have $G/Z(G) \in \{D_n, A_4, S_4, A_5\}$.

For example, the group

$$G := \left\langle \begin{pmatrix} 1 & 0 \\ 0 & \zeta_3 \end{pmatrix}, \frac{\sqrt{-3}}{3} \begin{pmatrix} -\zeta_3 & \zeta_3^2 \\ 2\zeta_3^2 & 1 \end{pmatrix} \right\rangle \leq \text{GL}_2(\mathbb{Q}(\zeta_3)),$$

with $\zeta_3 := \exp(2\pi i/3)$, is a frg of order 72, denoted G_5, isomorphic to $\text{SL}_2(3) \times C_3$.
Let $G \leq \text{SL}_2(\mathbb{C})$ be finite and $g \in G$. Let ζ be an eigenvalue of g. Then $\zeta^{-1}g$ is a reflection.

So, if $G = \langle g_1, \ldots, g_r \rangle$, the group $\langle \zeta_1^{-1}g_1, \ldots, \zeta_r^{-1}g_r \rangle$ is an frg.

Note that for G irreducible, we have $G/Z(G) \in \{D_n, \mathfrak{A}_4, \mathfrak{S}_4, \mathfrak{A}_5\}$.

For example, the group

$$G := \left\langle \begin{pmatrix} 1 & 0 \\ 0 & \zeta_3 \end{pmatrix}, \frac{\sqrt{-3}}{3} \begin{pmatrix} -\zeta_3 & \zeta_3^2 \\ 2\zeta_3^2 & 1 \end{pmatrix} \right\rangle \leq \text{GL}_2(\mathbb{Q}(\zeta_3)),$$

with $\zeta_3 := \exp(2\pi i/3)$, is a frg of order 72, denoted G_5, isomorphic to $\text{SL}_2(3) \times \mathfrak{S}_3$.

We may choose

$$u_1 := v_1^6 + 20v_1^3v_2^3 - 8v_2^6, \quad u_2 := 3v_1^3v_2^9 + 3v_1^6v_2^6 + v_1^9v_2^3 + v_2^{12},$$
Let $G \leq \text{SL}_2(\mathbb{C})$ be finite and $g \in G$. Let ζ be an eigenvalue of g. Then $\zeta^{-1}g$ is a reflection.

- So, if $G = \langle g_1, \ldots, g_r \rangle$, the group $\langle \zeta_1^{-1}g_1, \ldots, \zeta_r^{-1}g_r \rangle$ is an frg.

- Note that for G irreducible, we have $G/Z(G) \in \{D_n, A_4, S_4, A_5\}$.

- For example, the group

$$G := \left\langle \begin{pmatrix} 1 & 0 \\ 0 & \zeta_3 \end{pmatrix}, \frac{\sqrt{-3}}{3} \begin{pmatrix} -\zeta_3 & \zeta_3^2 \\ 2\zeta_3^2 & 1 \end{pmatrix} \right\rangle \leq \text{GL}_2(\mathbb{Q}(\zeta_3)),$$

with $\zeta_3 := \exp(2\pi i/3)$, is a frg of order 72, denoted G_5, isomorphic to $\text{SL}_2(3) \times C_3$.

- We may choose

$$u_1 := v_1^6 + 20v_1^3v_2^3 - 8v_2^6, \quad u_2 := 3v_1^3v_2^9 + 3v_1^6v_2^6 + v_1^9v_2^3 + v_2^{12},$$

with degrees $d_1 = 6, d_2 = 12$ (note that $d_1d_2 = 72 = |G|$).
Let $G \leq \text{SL}_2(\mathbb{C})$ be finite and $g \in G$. Let ζ be an eigenvalue of g. Then $\zeta^{-1}g$ is a reflection.

- So, if $G = \langle g_1, \ldots, g_r \rangle$, the group $\langle \zeta_1^{-1}g_1, \ldots, \zeta_r^{-1}g_r \rangle$ is an frg.
- Note that for G irreducible, we have $G/Z(G) \in \{D_n, A_4, S_4, A_5\}$.
- For example, the group

$$G := \left\langle \begin{pmatrix} 1 & 0 \\ 0 & \zeta_3 \end{pmatrix}, \frac{\sqrt{-3}}{3} \begin{pmatrix} -\zeta_3 & \zeta_3^2 \\ 2\zeta_3 & 1 \end{pmatrix} \right\rangle \leq \text{GL}_2(\mathbb{Q}(\zeta_3)),$$

with $\zeta_3 := \exp(2\pi i/3)$, is a frg of order 72, denoted G_5, isomorphic to $\text{SL}_2(3) \times C_3$.

- We may choose

$$u_1 := \nu_1^6 + 20\nu_1^3\nu_2^3 - 8\nu_2^6, \quad u_2 := 3\nu_1^3\nu_2^9 + 3\nu_1^6\nu_2^6 + \nu_1^9\nu_2^3 + \nu_2^{12},$$

with degrees $d_1 = 6, d_2 = 12$ (note that $d_1d_2 = 72 = |G|$).

- If $g \in \text{SL}_3(\mathbb{C})$ is an involution, then $-g$ is a reflection.
Let $G \leq \text{SL}_2(\mathbb{C})$ be finite and $g \in G$. Let ζ be an eigenvalue of g. Then $\zeta^{-1}g$ is a reflection.

So, if $G = \langle g_1, \ldots, g_r \rangle$, the group $\langle \zeta_1^{-1}g_1, \ldots, \zeta_r^{-1}g_r \rangle$ is an frg.

Note that for G irreducible, we have $G/Z(G) \in \{D_n, \mathfrak{A}_4, \mathfrak{S}_4, \mathfrak{A}_5\}$.

For example, the group

$$G := \langle \begin{pmatrix} 1 & 0 \\ 0 & \zeta_3 \end{pmatrix}, \frac{\sqrt{-3}}{3} \begin{pmatrix} -\zeta_3 & \zeta_3^2 \\ 2\zeta_3^2 & 1 \end{pmatrix} \rangle \leq \text{GL}_2(\mathbb{Q}(\zeta_3)),$$

with $\zeta_3 := \exp(2\pi i/3)$, is a frg of order 72, denoted G_5, isomorphic to $\text{SL}_2(3) \times C_3$.

We may choose

$$u_1 := v_1^6 + 20v_1^3v_2^3 - 8v_2^6, \quad u_2 := 3v_1^3v_2^9 + 3v_1^6v_2^6 + v_1^9v_2^3 + v_2^{12},$$

with degrees $d_1 = 6, d_2 = 12$ (note that $d_1d_2 = 72 = |G|$).

If $g \in \text{SL}_3(\mathbb{C})$ is an involution, then $-g$ is a reflection.

Note that \mathfrak{A}_5, $\text{PSL}_2(7)$ and $3.\mathfrak{A}_6$ have faithful 3-dimensional representations and are generated by involutions.
Classification

The finite reflection groups on \(\mathbb{C} \) have been classified by Coxeter, Shephard and Todd. There is one infinite series \(G(\mathfrak{d}, \mathfrak{e}, \mathfrak{r}) \) (\(\mathfrak{d}, \mathfrak{e} \) and \(\mathfrak{r} \) integers), ... and 34 exceptional groups \(G_{4}, G_{5}, \ldots, G_{37} \).

The group \(G(\mathfrak{d}, \mathfrak{e}, \mathfrak{r}) \) (\(\mathfrak{d}, \mathfrak{e} \) and \(\mathfrak{r} \) integers) consists of all \(\mathfrak{r} \times \mathfrak{r} \) monomial matrices with entries in \(\mu \mathfrak{d} \) such that the product of entries belongs to \(\mu \mathfrak{d} \).

We have

\[
G(\mathfrak{d}, 1, \mathfrak{r}) \cong \mathbb{C}^{\mathfrak{d}} \rtimes S_{\mathfrak{r}}
\]

\[
G(2, 2, \mathfrak{r}) = \mathbb{W}(D_{\mathfrak{r}})
\]

\[
G_{23} = H_{3}, \quad G_{28} = F_{4}, \quad G_{30} = H_{4},
\]

\[
G_{35}, 36, 37 = E_{6}, 7, 8.
\]
The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(d e, e, r)$ (d, e and r integers),
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups
The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(de, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups G_4, G_5, ..., G_{37}.
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups G_4, G_5, ..., G_{37}.

2. The group $G(de, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups G_4, G_5, \ldots, G_{37}.

2. The group $G(de, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.

3. We have
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups G_4, G_5, ..., G_{37}.

2. The group $G(de, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.

3. We have

$$G(d, 1, r) \simeq C_d \wr \mathfrak{S}_r$$
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups G_4, G_5, ..., G_{37}.

2. The group $G(de, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.

3. We have

 $G(d, 1, r) \simeq C_d \wr S_r$

 $G(e, e, 2) = D_{2e}$ (dihedral group of order $2e$)
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d,e and r integers),
 - ...and 34 exceptional groups G_4, G_5, \ldots, G_{37}.

2. The group $G(de, e, r)$ (d,e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.

3. We have

 \[G(d,1,r) \simeq C_d \wr \mathfrak{S}_r \]
 \[G(e,e,2) = D_{2e} \quad \text{(dihedral group of order } 2e) \]
 \[G(2,2,r) = W(D_r) \]
 \[G_{23} = H_3, \quad G_{28} = F_4, \quad G_{30} = H_4 \]
 \[G_{35,36,37} = E_{6,7,8}. \]
Let G be a finite subgroup of $\text{GL}(V)$. A reflection s is associated with

$H := \ker(s - 1)$, $L := \text{im}(s - 1)$, a reflecting pair (H, L). Properties:

$H \oplus L = V$, H determines L, and L determines H, hence, in terms of normalizers, $\text{N}_G(H) = \text{N}_G(L) = \text{N}_G(H, L)$.

The fixator G_H (pointwise stabilizer) of H is a cyclic group consisting of reflections with reflecting hyperplane H and reflecting line L.
Let G be a finite subgroup of $\text{GL}(V)$. A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
Let G be a finite subgroup of $\text{GL}(V)$. A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
Let G be a finite subgroup of $\text{GL}(V)$.

A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im} (s - 1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L = V$,
- H determines L, and L determines H,
- hence, in terms of normalizers, $\text{N}_G(H) = \text{N}_G(L) = \text{N}_G(H, L)$.

The fixator G_H (pointwise stabilizer) of H is a cyclic group consisting of reflections with reflecting hyperplane H and reflecting line L.

Michel Broué

Reflection groups, braids, Hecke algebras
Let G be a finite subgroup of $\text{GL}(V)$.

A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
- a reflecting pair (H, L).

Properties:

The fixator G_H (pointwise stabilizer) of H is a cyclic group consisting of reflections with reflecting hyperplane H and reflecting line L.

Michel Broué

Reflection groups, braids, Hecke algebras
Let G be a finite subgroup of $\text{GL}(V)$.

A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L = V$,
Let G be a finite subgroup of $\text{GL}(V)$. A reflection s is associated with
- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \im(s - 1)$,
- a reflecting pair (H, L).

Properties:
- $H \oplus L = V$,
- H determines L, and L determines H,
Let G be a finite subgroup of $\text{GL}(V)$.

A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L = V$,
- H determines L, and L determines H, hence, in terms of normalizers,

Let G be a finite subgroup of $\text{GL}(V)$. A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L = V$,
- H determines L, and L determines H, hence, in terms of normalizers,
 \[N_G(H) = N_G(L) = N_G(H, L). \]

- The fixator G_H (pointwise stabilizer) of H is a cyclic group consisting of reflections with reflecting hyperplane H and reflecting line L.

Michel Broué REFLECTION GROUPS, BRAIDS, HECKE ALGEBRAS
Notation

A := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}

For \(H \in A\), \(e_H := |G_H|\) is the generator of \(G_H\) whose nontrivial eigenvalue is \(e^{2\pi i / e_H}\), called a distinguished reflection.

For \(L\) a line in \(V\), the ideal \(q := SL\) of \(S\) is a height one prime ideal. In other words, the hypersurface of \(V\) defined by \(q\) is a codimension one irreducible variety.

Now the extension \(S_R = S \downarrow G \rtimes \uparrow \uparrow (\text{corresponding to the covering } V \downarrow V / G)\) is ramified at \(q = SL\) if and only if \(L\) is a reflecting line.
Notation

- $\mathcal{A} := \{ H \mid H$ reflecting hyperplane of some reflection in $G\}$
Notation

- \(\mathcal{A} := \{ H \mid H \text{ reflecting hyperplane of some reflection in } G \} \)
- For \(H \in \mathcal{A} \), \(e_H := |G_H| \)
Notation

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi/|e_H|}$,
Notation

- \(\mathcal{A} := \{ H \mid H \text{ reflecting hyperplane of some reflection in } G \} \)
- For \(H \in \mathcal{A} \), \(e_H := |G_H| \)
- \(s_H \) is the generator of \(G_H \) whose nontrivial eigenvalue is \(e^{2i\pi/e_H} \), called a distinguished reflection.
Notation

- $\mathcal{A} := \{ H \mid H$ reflecting hyperplane of some reflection in $G\}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi/e_H}$, called a distinguished reflection.

For L a line in V, the ideal $q := SL$ of S is a height one prime ideal.
Notation

- \(\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\} \)
- For \(H \in \mathcal{A} \), \(e_H := |G_H| \)
- \(s_H \) is the generator of \(G_H \) whose nontrivial eigenvalue is \(e^{2i\pi/e_H} \), called a distinguished reflection.

For \(L \) a line in \(V \), the ideal \(q := SL \) of \(S \) is a height one prime ideal. In other words, the hypersurface of \(V \) defined by \(q \) is a codimension one irreducible variety.
Notation

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi/e_H}$, called a distinguished reflection.

For L a line in V, the ideal $q := SL$ of S is a height one prime ideal. In other words, the hypersurface of V defined by q is a codimension one irreducible variety.

Now the extension

$$R = S^G$$
Notation

- $A := \{ H \mid H \text{ reflecting hyperplane of some reflection in } G \}$
- For $H \in A$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi/e_H}$, called a distinguished reflection.

For L a line in V, the ideal $q := SL$ of S is a height one prime ideal. In other words, the hypersurface of V defined by q is a codimension one irreducible variety.

Now the extension $R = S^G$ (corresponding to the covering $V \downarrow V/G$).
Notation

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi/e_H}$, called a distinguished reflection.

For L a line in V, the ideal $q := SL$ of S is a height one prime ideal. In other words, the hypersurface of V defined by q is a codimension one irreducible variety.

Now the extension $R = S^G \hookrightarrow S$ (corresponding to the covering \downarrow) is ramified at $q = SL$ if and only if L is a reflecting line.
Thus there are G-equivariant bijections $A \leftarrow \leftarrow \rightarrow \rightarrow \{\text{reflecting lines}\} \leftarrow \leftarrow \rightarrow \rightarrow \{\text{ramified height one prime ideals of } S\}$.

Assume G generated by reflections.

1. The ramification locus of $V \rightarrow \rightarrow \rightarrow \rightarrow V/\!\!G$ is $\bigcup H \in A H$.

2. Let X be a subset of V. Then the fixator of X in G is generated by the reflections which fix X.

3. The set $\text{Par}(G)$ of fixators ("parabolic subgroups" of G) is in (reverse–order) bijection with the set $I(A)$ of intersections of elements of A:

$$I(A) \sim_{\rightarrow} \text{Par}(G), X \mapsto G X.$$

Michel Broué

Reflection groups, braids, Hecke algebras
Thus there are G–equivariant bijections

\[A \longleftrightarrow \{ \text{reflecting lines} \} \longleftrightarrow \{ \text{ramified height one prime ideals of } S \} \]
Thus there are G–equivariant bijections

\[\mathcal{A} \leftrightarrow \{ \text{reflecting lines} \} \leftrightarrow \{ \text{ramified height one prime ideals of } S \} \]

Ramification and parabolic subgroups
Thus there are G–equivariant bijections

$$\mathcal{A} \longleftrightarrow \{\text{reflecting lines}\} \longleftrightarrow \{\text{ramified height one prime ideals of } S\}$$

Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.
Thus there are G–equivariant bijections

\[A \longleftrightarrow \{ \text{reflecting lines} \} \longleftrightarrow \{ \text{ramified height one prime ideals of } S \} \]

Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.

1. The ramification locus of $V \twoheadrightarrow V/G$ is $\bigcup_{H \in A} H$.
Thus there are G–equivariant bijections

$$\mathcal{A} \leftrightarrow \{\text{reflecting lines}\} \leftrightarrow \{\text{ramified height one prime ideals of } S\}$$

Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.

1. The ramification locus of $V \twoheadrightarrow V/G$ is $\bigcup_{H \in \mathcal{A}} H$.
2. Let X be a subset of V. Then the fixator of X in G is generated by the reflections which fix X.

Michel Broué

Reflection groups, braids, Hecke algebras
Thus there are G–equivariant bijections

$$\mathcal{A} \leftrightarrow \{\text{reflecting lines}\} \leftrightarrow \{\text{ramified height one prime ideals of } S\}$$

Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.

1. The ramification locus of $V \rightarrow V/G$ is $\bigcup_{H \in \mathcal{A}} H$.
2. Let X be a subset of V. Then the fixator of X in G is generated by the reflections which fix X.
3. The set $\text{Par}(G)$ of fixators (“parabolic subgroups” of G) is in (reverse–order) bijection with the set $I(\mathcal{A})$ of intersections of elements of \mathcal{A}:

$$I(\mathcal{A}) \sim \text{Par}(G), \quad X \mapsto G_X.$$
Braid groups

Set $V_{\text{reg}} := V - \bigcup_{H \in A} H$.

Since the covering $V_{\text{reg}} \to V_{\text{reg}}/G$ is Galois, it induces a short exact sequence

$$1 \to \Pi_1(V_{\text{reg}}, x_0) \to \Pi_1(V_{\text{reg}}/G, x_0) \to \mathbb{Z}^r \to 1.$$
Set

\[V^{\text{reg}} := V - \bigcup_{H \in \mathcal{A}} H. \]
Set

\[V^{\text{reg}} := V - \bigcup_{H \in \mathcal{A}} H. \]

Since the covering \(V^{\text{reg}} \longrightarrow V^{\text{reg}}/G \) is Galois, it induces a short exact sequence
Set

\[\mathcal{V}^{\text{reg}} := \mathcal{V} - \bigcup_{H \in \mathcal{A}} H. \]

Since the covering \(\mathcal{V}^{\text{reg}} \to \mathcal{V}^{\text{reg}}/G \) is Galois, it induces a short exact sequence

\[
1 \longrightarrow \Pi_1(\mathcal{V}^{\text{reg}}, x_0) \longrightarrow \Pi_1(\mathcal{V}^{\text{reg}}/G, x_0) \longrightarrow G \longrightarrow 1
\]
Set

\[V^{\text{reg}} := V - \bigcup_{H \in \mathcal{A}} H. \]

Since the covering \(V^{\text{reg}} \rightarrow V^{\text{reg}}/G \) is Galois, it induces a short exact sequence

\[
\begin{array}{ccccccccc}
1 & \rightarrow & \Pi_1(V^{\text{reg}}, x_0) & \rightarrow & \Pi_1(V^{\text{reg}}/G, x_0) & \rightarrow & G & \rightarrow & 1
\end{array}
\]

\[
\begin{array}{ccccccccc}
&P_G & \| & & \| & \| & B_G
\end{array}
\]
Set

\[V^{\text{reg}} := V - \bigcup_{H \in \mathcal{A}} H. \]

Since the covering \(V^{\text{reg}} \rightarrow V^{\text{reg}}/G \) is Galois, it induces a short exact sequence

\[
1 \rightarrow \Pi_1(V^{\text{reg}}, x_0) \rightarrow \Pi_1(V^{\text{reg}}/G, x_0) \rightarrow G \rightarrow 1
\]

\(P_G \) (Pure braid group) \hspace{1cm} \(B_G \) (Braid group)
Notation around H

Let $H \in A$ with associated line L. For $x \in V$, we set $x = x_L + x_H$ (with $x_L \in L$ and $x_H \in H$).

Thus, we have $s_H(x) = e^{2\pi i/x_H x_L + x_H}$.

If $t \in \mathbb{R}$, we set $s_t H(x) = e^{2\pi i t/x_H x_L + x_H}$ defining a path s_H, x from x to $s_H(x)$.

We have $s_{te} H(x) = e^{2\pi i t/x_H x_L + x_H}$ defining a loop π_H, x with origin x. In other words, π_H, $x = s_{se} H$, $x \in P$.
Notation around \(H \)

- Let \(H \in \mathcal{A} \), with associated line \(L \).
Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set
 \[x = x_L + x_H \quad \text{(with } x_L \in L \text{ and } x_H \in H). \]
Notation around H

- Let $H \in A$, with associated line L. For $x \in V$, we set

$$x = x_L + x_H \quad (\text{with } x_L \in L \text{ and } x_H \in H).$$

- Thus, we have

$$s_H(x) = e^{2i\pi/e_H}x_L + x_H.$$
Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set

 $$x = x_L + x_H \quad \text{(with } x_L \in L \text{ and } x_H \in H).$$

 Thus, we have

 $$s_H(x) = e^{2i\pi/e_H}x_L + x_H.$$

- If $t \in \mathbb{R}$, we set:

 $$s^t_H(x) = e^{2i\pi t/e_H}x_L + x_H \quad \text{defining a path } s_{H,x} \text{ from } x \text{ to } s_H(x).$$
Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set

$$x = x_L + x_H \quad \text{(with } x_L \in L \text{ and } x_H \in H).$$

Thus, we have

$$s_H(x) = e^{2i\pi/e_H}x_L + x_H.$$

- If $t \in \mathbb{R}$, we set:

$$s_H^t(x) = e^{2i\pi t/e_H}x_L + x_H \quad \text{defining a path } s_{H,x} \text{ from } x \text{ to } s_H(x).$$

We have

$$s_{H}^{te_H}(x) = e^{2\pi it}x_L + x_H \quad \text{defining a loop } \pi_{H,x} \text{ with origin } x.$$
Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set

 $$x = x_L + x_H \quad \text{(with } x_L \in L \text{ and } x_H \in H).$$

 Thus, we have

 $$s_H(x) = e^{2i\pi/e_H} x_L + x_H.$$

- If $t \in \mathbb{R}$, we set:

 $$s_{H}^{t}(x) = e^{2i\pi t/e_H} x_L + x_H \quad \text{defining a path } s_{H,x} \text{ from } x \text{ to } s_H(x).$$

 We have

 $$s_{H}^{te_H}(x) = e^{2\pi it} x_L + x_H \quad \text{defining a loop } \pi_{H,x} \text{ with origin } x.$$

 In other words,

 $$\pi_{H,x} = s_{H,x}^{e_H} \in P_G$$
Let γ be a path in V_{reg} from x_0 to x_H.

We define:

$$\sigma_{H,\gamma} := s_H(\gamma - 1) \cdot s_H, x_0 \cdot x_H \cdot s_H(x_H) \cdot x_0$$

Definition

We call braid reflections the elements $s_H, \gamma \in B$ defined by the paths $\sigma_{H,\gamma}$.

Michel Broué
Reflection groups, braids, Hecke algebras
Braid reflections

Let γ be a path in V_{reg} from x_0 to x_H.

We define:

$$\sigma_{H,\gamma} := \sigma_H(\gamma - 1) \cdot \sigma_H, x \cdot \gamma \cdot x_0 \cdot H \cdot x_H$$

Definition

We call braid reflections the elements $s_{H,\gamma} \in B$ defined by the paths $\sigma_{H,\gamma}$.
Braid reflections

Let γ be a path in V_{reg} from x_0 to x_H. We define:

$$\sigma_{H, \gamma} := s_{H}(\gamma - 1) \cdot s_{H, x} \cdot \gamma \cdot x_0 \cdot H \cdot s_{H}(x_H) \cdot \iota$$

Definition

We call braid reflections the elements $s_{H, \gamma} \in B$ defined by the paths $\sigma_{H, \gamma}$.
Braid reflections

Let γ be a path in V_{reg} from x_0 to x_H. We define:

$$\sigma_{H,\gamma} := s_H(\gamma - 1) \cdot s_H(x) \cdot \gamma$$

Definition

We call braid reflections the elements $s_H,\gamma \in B$ defined by the paths $\sigma_{H,\gamma}$.
Braid reflections

Let γ be a path in V_{reg} from x_0 to x_H. We define:

$$\sigma_{H,\gamma} := s_H(\gamma - 1) \cdot s_{x_0}.$$

Definition

We call braid reflections the elements $s_{H,\gamma} \in B$ defined by the paths $\sigma_{H,\gamma}$.

Michel Broué
Reflection groups, braids, Hecke algebras
Let γ be a path in V_{reg} from x_0 to x_H. We define :

$$\sigma_H,\gamma := \sigma_H(\gamma - 1) \cdot \sigma_H(x) \cdot \sigma_H(x_H)$$

Definition: We call braid reflections the elements $s_H,\gamma \in B$ defined by the paths σ_H,γ.

Michel Broué: Reflection groups, braids, Hecke algebras
Braid reflections

Let γ be a path in V^{reg} from x_0 to x_H.

$$\sigma_H,\gamma = s_H(\gamma - 1) \cdot (s_H, x_0 \cdot \gamma, \gamma)$$

Definition

We call braid reflections the elements $s_H, \gamma \in B$ defined by the paths σ_H, γ.

Michel Broué
Reflection groups, braids, Hecke algebras
Braid reflections

Let γ be a path in V^{reg} from x_0 to x_H.

$$s_{H,x} \cdot \gamma$$

\bullet $s_H(x_0)$

\[\begin{array}{c}
H \\
\downarrow \\
x_H \\
\downarrow \\
\gamma \\
x_0 \\
\end{array} \]

H \\
$s_H(x_H)$ \\
$s_H(x_H)$ \\
$s_H(x_0)$
Braid reflections

Let γ be a path in V^{reg} from x_0 to x_H.

$$s_H(\gamma^{-1}) \cdot s_{H,x} \cdot \gamma$$
Braid reflections

Let \(\gamma \) be a path in \(V^{\text{reg}} \) from \(x_0 \) to \(x_H \).

We define:

\[
\sigma_{H, \gamma} := s_H(\gamma^{-1}) \cdot s_{H, x} \cdot \gamma
\]
Braid reflections

Let γ be a path in V^reg from x_0 to x_H.

We define: $\sigma_{H,\gamma} := s_H(\gamma^{-1}) \cdot s_{H,x} \cdot \gamma$
Braid reflections

Let γ be a path in V^{reg} from x_0 to x_H.

We define: $\sigma_{H,\gamma} := s_H(\gamma^{-1}) \cdot s_{H,x} \cdot \gamma$

Definition

We call braid reflections the elements $s_{H,\gamma} \in B$ defined by the paths $\sigma_{H,\gamma}$.
The following properties are immediate.
The following properties are immediate.

- $s_{H,\gamma}$ and $s_{H,\gamma'}$ are conjugate in P.
The following properties are immediate.

- $s_{H,\gamma}$ and $s_{H,\gamma'}$ are conjugate in P.
- $s_{eH}^{H,\gamma}$ is a loop in V^{reg}.

\[\gamma \]

\[\cdot x_0 \]
The following properties are immediate.

- $s_{H,\gamma}$ and $s_{H,\gamma'}$ are conjugate in P.
- $s_{H,\gamma}^e$ is a loop in V^{reg}:

![Diagram](image)

The variety V (resp. V/G) is connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are “generators of the monodromy” around the irreducible divisors. Then
The following properties are immediate.

- $s_{H,\gamma}$ and $s_{H,\gamma'}$ are conjugate in P.
- $s_{H,\gamma}^{e_H}$ is a loop in V^{reg}:

\[
\begin{array}{c}
\circ \rightarrow \\
\gamma \cdot x_0
\end{array}
\]

The variety V (resp. V/G) is connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are “generators of the monodromy” around the irreducible divisors. Then

Theorem
The following properties are immediate.

- \(s_{H,\gamma} \) and \(s_{H,\gamma'} \) are conjugate in \(P \).
- \(s_{H,\gamma}^{e_H} \) is a loop in \(V^{\text{reg}} \):

The variety \(V \) (resp. \(V/G \)) is connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are “generators of the monodromy” around the irreducible divisors. Then

Theorem

1. The braid group \(B_G \) is generated by the braid reflections \((s_{H,\gamma}) \) (for all \(H \) and all \(\gamma \)).
The following properties are immediate.

- $s_{H,\gamma}$ and $s_{H,\gamma'}$ are conjugate in P.
- $s_{H,\gamma}^{eH}$ is a loop in V^{reg}:

The variety V (resp. V/G) is connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are “generators of the monodromy” around the irreducible divisors. Then

Theorem

1. The braid group B_G is generated by the braid reflections $(s_{H,\gamma})$ (for all H and all γ).
2. The pure braid group P_G is generated by the elements $(s_{H,\gamma}^{eH})$.
Linear characters of the reflection groups

For $H \in \mathcal{A}$,
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,

Proposition 1

The linear character $\det_H : G \to \mathbb{C} \times$ is defined by $g(j_H) = \det_H(g)j_H$.

$\det_H(s) = \begin{cases}
\det(s) & \text{if } Hs = G \\
1 & \text{if not}
\end{cases}$

$\hom(G, \mathbb{C} \times) \sim \rightarrow (\prod_{H \in \mathcal{A}} \hom(G_H, \mathbb{C} \times)) / G
\cong \prod_{H \in \mathcal{A}} \hom(G_H, \mathbb{C} \times)$
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
- $j_H := \prod\{H' | (H' \equiv_G H)\} j_{H'}$ (depends only on the orbit of H under G)
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
- $j_H := \prod \{H' \mid (H' \cong G_H)\} j_{H'}$ (depends only on the orbit of H under G)

Proposition
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
- $j_H := \prod \{H'|(H'=_{G}H)\} j_H'$ (depends only on the orbit of H under G)

Proposition

1. The linear character $\det_H : G \to \mathbb{C}^\times$ is defined by $g(j_H) = \det_H(g)j_H$
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
- $j_H := \prod \{ H' \mid (H' \equiv G \cdot H) \} j_{H'}$ (depends only on the orbit of H under G)

Proposition

1. The linear character $\det_H : G \to \mathbb{C}^\times$ is defined by $g(j_H) = \det_H(g) j_H$
2. $\det_H(s) = \begin{cases} \det(s) & \text{if } H_s = G \cdot H \\ 1 & \text{if not} \end{cases}$
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
- $j_H := \prod\{H'|(H'=_{G}H)\} j_{H'}$ (depends only on the orbit of H under G)

Proposition

1. The linear character $\det_{H} : G \to \mathbb{C}^\times$ is defined by $g(j_{H}) = \det_{H}(g) j_{H}$

2. $\det_{H}(s) = \begin{cases} \det(s) & \text{if } H_s =_{G} H \\ 1 & \text{if not} \end{cases}$

3. $\text{Hom}(G, \mathbb{C}^\times) \xrightarrow{\sim} (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^{G}$
Linear characters of the reflection groups

For $H \in A$,

- j_H denotes a nontrivial element of L,

- $j_H := \prod \{ H' \mid (H' =_G H) \} j_{H'}$ (depends only on the orbit of H under G)

Proposition

1. The linear character $\det_H : G \to \mathbb{C}^\times$ is defined by $g(j_H) = \det_H(g) j_H$
2. $\det_H(s) = \begin{cases} \det(s) & \text{if } H_s =_G H \\ 1 & \text{if not} \end{cases}$
3. $\text{Hom}(G, \mathbb{C}^\times) \overset{\sim}{\longrightarrow} \left(\prod_{H \in A} \text{Hom}(G_H, \mathbb{C}^\times) \right)^G \cong \prod_{H \in A/G} \text{Hom}(G_H, \mathbb{C}^\times)$
Linear characters of the braid groups

The discriminant at $H \in A$ (or rather A/G) is $\Delta_H := j_H H \Delta_H \in R = S_G$ hence its dual $\Delta^*_H \in R^* = S_G^*$ defines a (continuous) map $\Delta^*_H : V_{\text{reg}} \to C \times V_{\text{reg}} / G$ hence defines a morphism $\Pi_1(\Delta^*_H) : \Pi_1(V_{\text{reg}} / G) \to \Pi_1(C \times)$ i.e., $\ell_H : B_G \to \mathbb{Z}$ For $H \in A_L$, $L_H \downarrow \downarrow \downarrow \downarrow \downarrow B_G \cong \mathbb{Z} \downarrow G \cong \mathbb{Z} / e_H \mathbb{Z}$
Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j_H^{\text{et}}$
Linear characters of the braid groups

- The discriminant at \(H \in A \) (or rather \(A/G \)) is \(\Delta_H := j_H^{eH} \)
- \(\Delta_H \in R = S^G \)
Linear characters of the braid groups

- The discriminant at $H \in A$ (or rather A/G) is $\Delta_H := j_H^{e_H}$
- $\Delta_H \in R = S^G$ hence its dual $\Delta_H^* \in R^* = S^*_G$ defines a (continuous) map

$$\Delta_H^* : V^{\text{reg}} \rightarrow \mathbb{C}^\times \rightarrow V^{\text{reg}}/G$$
Linear characters of the braid groups

- The discriminant at \(H \in \mathcal{A} \) (or rather \(\mathcal{A}/G \)) is \(\Delta_H := j_{eH}^H \)

- \(\Delta_H \in R = S^G \) hence its dual \(\Delta_H^* \in R^* = S^G \) defines a (continuous) map

\[
\Delta_H^* : V^{\text{reg}} \rightarrow \mathbb{C}^\times
\]

hence defines a morphism

\[
\Delta_H^* : V^{\text{reg}} \rightarrow \mathbb{C}^\times \rightarrow \mathbb{C}^\times
\]

\[
V^{\text{reg}} / G
\]
The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j_H^e$

$\Delta_H \in R = S^G$ hence its dual $\Delta_H^* \in R^* = S^G$ defines a (continuous) map

$$\Delta_H^* : V^\text{reg} \to \mathbb{C}^\times$$

hence defines a morphism

$$\Pi_1(\Delta_H^*) : \Pi_1(V^\text{reg}/G) \to \Pi_1(\mathbb{C}^\times) \quad i.e.,$$
The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j_H^e$

$\Delta_H \in R = S^G$ hence its dual $\Delta^*_H \in R^* = S^G$ defines a (continuous) map

$$\Delta^*_H : V^{\text{reg}} \rightarrow \mathbb{C}^\times$$

hence defines a morphism

$$\Pi_1(\Delta^*_H) : \Pi_1(V^{\text{reg}}/G) \rightarrow \Pi_1(\mathbb{C}^\times)$$

i.e., $\ell_H : B_G \rightarrow \mathbb{Z}$
The discriminant at \(H \in \mathcal{A} \) (or rather \(\mathcal{A}/G \)) is \(\Delta_H := j_H^{e_H} \).

\(\Delta_H \in R = S^G \) hence its dual \(\Delta^*_H \in R^* = S^*_G \) defines a (continuous) map

\[
\Delta^*_H : V_{\text{reg}} \to \mathbb{C}^\times
\]

hence defines a morphism

\[
\Pi_1(\Delta^*_H) : \Pi_1(V_{\text{reg}}/G) \to \Pi_1(\mathbb{C}^\times)
\]
i.e., \(\ell_H : B_G \to \mathbb{Z} \)

For \(H \in \mathcal{A} \),

\[
\text{Michel Broué}
\]

Reflection groups, braids, Hecke algebras
Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j^e_H$

- $\Delta_H \in R = S^G$ hence its dual $\Delta^*_H \in R^* = S^*_G$ defines a (continuous) map

$$
\Delta^*_H : V^\text{reg} \rightarrow \mathbb{C}^\times \quad \text{hence defines a morphism}
$$

$$
\Lambda^*_H : V^\text{reg}/G \rightarrow \mathbb{C}^\times
$$

- $\Pi_1(\Delta^*_H) : \Pi_1(V^\text{reg}/G) \rightarrow \Pi_1(\mathbb{C}^\times)$ i.e., $\ell_H : B_G \rightarrow \mathbb{Z}$

- For $H \in \mathcal{A}$,

$$
B_{GH} \simeq \mathbb{Z}
$$
The discriminant at \(H \in \mathcal{A} \) (or rather \(\mathcal{A}/G \)) is \(\Delta_H := j_H^{e_H} \).

\(\Delta_H \in R = S^G \) hence its dual \(\Delta_H^* \in R^* = S^*_G \) defines a (continuous) map

\[\Delta_H^*: V^{\text{reg}} \rightarrow \mathbb{C}^\times \]

hence defines a morphism

\[\Pi_1(\Delta_H^*) : \Pi_1(V^{\text{reg}}/G) \rightarrow \Pi_1(\mathbb{C}^\times) \]

i.e., \(\ell_H : B_G \rightarrow \mathbb{Z} \)

For \(H \in \mathcal{A} \),

\[B_{G_H} \simeq \mathbb{Z} \]

\[G_H \simeq \mathbb{Z}/e_H\mathbb{Z} \]
Proposition

\[\text{Hom}(G, C \times \prod_{H \in A} \text{Hom}(G H, C)) \sim - \rightarrow \text{Hom}(B G, Z) \sim - \rightarrow \prod_{H \in A} \text{Hom}(B G H, Z) \]

\[\ell_H(\text{sn}_1 H_1 \cdot \text{sn}_2 H_2 \cdot \cdots \cdot \text{sn}_k H_k, \gamma_1 \cdot \gamma_2 \cdots \gamma_k) = \sum_{\{i \mid H_i = G H\}} n_i \]

Michel Broué

Reflection groups, braids, Hecke algebras
Proposition
Proposition

1. \(\text{Hom}(G, \mathbb{C}^\times) \xrightarrow{\approx} (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^G \)
Proposition

1. \[\text{Hom}(G, \mathbb{C}^\times) \sim (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^G \]

\[\text{Hom}(B_G, \mathbb{Z}) \sim (\prod_{H \in \mathcal{A}} \text{Hom}(B_{G_H}, \mathbb{Z}))^G \]
Proposition

1. $\text{Hom}(G, \mathbb{C}^\times) \xrightarrow{\sim} (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^G$

 $\text{Hom}(B_G, \mathbb{Z}) \xrightarrow{\sim} (\prod_{H \in \mathcal{A}} \text{Hom}(B_{G_H}, \mathbb{Z}))^G$

2. ℓ_H is a length:
Proposition

1. \(\text{Hom}(G, \mathbb{C}^\times) \sim (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^G \)

2. \(\text{Hom}(B_G, \mathbb{Z}) \sim (\prod_{H \in \mathcal{A}} \text{Hom}(B_{G_H}, \mathbb{Z}))^G \)

\(\ell_H \) is a length:

\[
\ell_H(s_{H_1, \gamma_1}^{n_1} \cdot s_{H_2, \gamma_2}^{n_2} \cdots s_{H_k, \gamma_k}^{n_k}) = \sum_{\{i \mid (H_i = G)\}} n_i
\]
Proposition

1. \(\text{Hom}(G, \mathbb{C}^\times) \overset{\sim}{\to} (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^G \)

2. \(\ell_H \) is a length:

\[
\ell_H(s_{H_1, \gamma_1}^{n_1} \cdot s_{H_2, \gamma_2}^{n_2} \cdots s_{H_k, \gamma_k}^{n_k}) = \sum_{\{i \mid (H_i = G_H)\}} n_i
\]
Center of the braid groups

From now on we assume that G is irreducible on V. Hence the centre of G is cyclic. Set $z := |\mathbb{Z}_G|$ and $\zeta := e^{2\pi i/z}$.

Let $\pi \in P_G$ defined by $\pi : t \mapsto e^{2\pi it}x_0$.

Let $\zeta \in B_G$ defined by $\zeta : t \mapsto e^{2\pi it/z}x_0$.

Theorem 1

$Z_{P_G} = \langle \pi \rangle$ and $Z_{B_G} = \langle \zeta \rangle$.

We have the short exact sequence

$1 \rightarrow Z_{P_G} \rightarrow Z_{B_G} \rightarrow Z_G \rightarrow 1$
Center of the braid groups

From now on we assume that G is irreducible on V.

Theorem

1. $\mathbb{Z}P_G = \langle \pi \rangle$ and $\mathbb{Z}B_G = \langle \zeta \rangle$.

2. We have the short exact sequence $1 \to \mathbb{Z}P_G \to \mathbb{Z}B_G \to \mathbb{Z}G \to 1.$
From now on we assume that G is irreducible on V.
Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.
From now on we assume that G is irreducible on V. Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.

- Let $\pi \in P_G$ defined by $\pi : t \mapsto e^{2i\pi t} \chi_0$
Center of the braid groups

From now on we assume that G is irreducible on V.

Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.

- Let $\pi \in P_G$ defined by $\pi : t \mapsto e^{2i\pi t} x_0$
- Let $\zeta \in B_G$ defined by $\zeta : t \mapsto e^{2i\pi t/z} x_0$

Theorem 1

$\mathbb{Z}P_G = \langle \pi \rangle$ and $\mathbb{Z}B_G = \langle \zeta \rangle$

2

We have the short exact sequence

$1 \longrightarrow \mathbb{Z}P_G \longrightarrow \mathbb{Z}B_G \longrightarrow \mathbb{Z}G \longrightarrow 1$
From now on we assume that G is irreducible on V. Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.

- Let $\pi \in P_G$ defined by $\pi : t \mapsto e^{2i\pi t}x_0$
- Let $\zeta \in B_G$ defined by $\zeta : t \mapsto e^{2i\pi t/z}x_0$

Theorem
From now on we assume that G is irreducible on V. Hence the centre of G is cyclic. Set $z := |ZG|$ and $ζ := e^{2iπ/z}$.

- Let $π ∈ P_G$ defined by $π : t ↦ e^{2iπt}x_0$
- Let $ζ ∈ B_G$ defined by $ζ : t ↦ e^{2iπt/z}x_0$

Theorem

1. $ZP_G = \langle π \rangle$ and $ZB_G = \langle ζ \rangle$.
From now on we assume that G is irreducible on V. Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.

- Let $\pi \in P_G$ defined by $\pi : t \mapsto e^{2i\pi t}x_0$
- Let $\zeta \in B_G$ defined by $\zeta : t \mapsto e^{2i\pi t/z}x_0$

Theorem

1. $ZP_G = \langle \pi \rangle$ and $ZB_G = \langle \zeta \rangle$.
2. We have the short exact sequence

$$1 \longrightarrow ZP_G \longrightarrow ZB_G \longrightarrow ZG \longrightarrow 1$$
Case of Coxeter groups

The choice of a Coxeter generating set for \mathcal{G} defines a presentation of $B\mathcal{G}$.

Example:

\[\begin{align*}
\pi &= ((st)^{t_1}t_2\cdots t_{r-1})^2
\end{align*} \]

Let w_0 be the longest element of \mathcal{G}, and let g_0 be its lift in $B\mathcal{G}$.

\[\pi = g_2^2 \]

Example:

\[\pi = ((st)^{t_1}t_2\cdots t_{r-1})^2 \]
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G.
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G

Example:

$\pi = (st_{1}t_{2}\cdots t_{r-1})$
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G

Example:

\[
\begin{array}{cccc}
s & t_1 & t_2 & t_{r-1} \\
\end{array}
\]

and a “section” (not a group morphism !) of the map $B_G \to G$ using reduced decompositions.
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G

Example:

and a “section” (not a group morphism !) of the map $B_G \twoheadrightarrow G$ using reduced decompositions.

Let w_0 be the longest element of G, and let g_0 be its lift in B_G.
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G

\[
\begin{array}{c}
\text{Example:} \\
\circ \rightarrow \circ \rightarrow \cdots \rightarrow \circ \\
\scriptsize s \quad t_1 \quad t_2 \quad \cdots \quad t_{r-1}
\end{array}
\]

and a “section” (not a group morphism!) of the map $B_G \twoheadrightarrow G$ using reduced decompositions.

Let w_0 be the longest element of G, and let g_0 be its lift in B_G.

\[
\pi = g_0^2
\]
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G

Example:

and a “section” (not a group morphism!) of the map $B_G \to G$ using reduced decompositions.

Let w_0 be the longest element of G, and let g_0 be its lift in B_G.

$$\pi = g_0^2$$

Example: $$\pi = (st_1t_2 \cdots t_{r-1})^{2r}$$
Artin–like presentations

An Artin–like presentation is \(\langle s \in S \mid \{ v_i = w_i \} \rangle \)
where \(S \) is a finite set of distinguished braid reflections, \(I \) is a finite set of relations which are multi–homogeneous.

Theorem (Bessis)

Let \(G \subset \text{GL}(V) \) be a complex reflection group. Let \(d_1 \leq d_2 \leq \cdots \leq d_r \) be the family of its invariant degrees.

1. The following integers are equal (denoted by \(\Gamma_G \)):
 - The minimal number of reflections needed to generate \(G \)
 - The minimal number of braid reflections needed to generate \(B_G \)
 \[\left\lceil \frac{N + N_h}{d_r} \right\rceil \]

2. Either \(\Gamma_G = r \) or \(\Gamma_G = r + 1 \), and the group \(B_G \) has an Artin–like presentation by \(\Gamma_G \) braid reflections.

Michel Broué
Reflection groups, braids, Hecke algebras
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

Theorem (Bessis)

Let $G \subset \text{GL}(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

1. The following integers are equal (denoted by Γ_G):
 - The minimal number of reflections needed to generate G
 - The minimal number of braid reflections needed to generate B_G
 $$\left\lceil \frac{N + N_h}{d_r} \right\rceil$$

2. Either $\Gamma_G = r$ or $\Gamma_G = r + 1$, and the group B_G has an Artin–like presentation by Γ_G braid reflections.

Michel Broué

Reflection groups, braids, Hecke algebras
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
An Artin–like presentation is

\[\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle \]

where

- \(S \) is a finite set of distinguished braid reflections,
- \(I \) is a finite set of relations which are multi–homogeneous.
An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

 i.e., such that (for each i) v_i and w_i are positive words in elements of S
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset GL(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

$$\text{either } \Gamma_G = r \text{ or } \Gamma_G = r + 1, \text{ and the group } B_G \text{ has an Artin–like presentation by } \Gamma_G \text{ braid reflections.}$$
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset GL(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

1. The following integers are equal:
 - The minimal number of reflections needed to generate G
 - The minimal number of braid reflections needed to generate B_G
 - $\lceil \frac{N + N_h}{d_r} \rceil$
 - Either $\Gamma_G = r$ or $\Gamma_G = r + 1$, and the group B_G has an Artin–like presentation by Γ_G braid reflections.
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset GL(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

1. The following integers are equal:
 - The minimal number of reflections needed to generate G
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset \text{GL}(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

1. The following integers are equal:
 - The minimal number of reflections needed to generate G
 - The minimal number of braid reflections needed to generate B_G

Michel Broué
Reflection groups, braids, Hecke algebras
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset \text{GL}(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

1. The following integers are equal:
 - The minimal number of reflections needed to generate G
 - The minimal number of braid reflections needed to generate B_G
 - $\lceil (N + N_h)/d_r \rceil$
An *Artin–like* presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I}\rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset \text{GL}(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

1. The following integers are equal (denoted by Γ_G):
 - The minimal number of reflections needed to generate G
 - The minimal number of braid reflections needed to generate B_G
 - $\lceil (N + N_h)/d_r \rceil$ ($N := \text{number of reflections}, N_h := \text{number of hyperplanes}$)
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset \text{GL}(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

1. The following integers are equal (denoted by Γ_G):
 - The minimal number of reflections needed to generate G
 - The minimal number of braid reflections needed to generate B_G
 - $\lceil (N + N_h)/d_r \rceil$

2. Either $\Gamma_G = r$ or $\Gamma_G = r + 1$, and the group B_G has an Artin–like presentation by Γ_G braid reflections.
Let D be a diagram like $s \circ a \circ b \circ c$. D represents the relations $s \cdot t \cdot s \cdot u \cdot s \cdot t \cdot s$, e factors $= t \cdot u \cdot s \cdot t \cdot s \cdot t \cdot s$, e factors $= u \cdot t \cdot s \cdot u \cdot t \cdot s$. We denote by D_{br} and call braid diagram the diagram $s \circ n \circ e \circ t \circ u$, which represents the relations $s \cdot t \cdot s \cdot u \cdot s \cdot t \cdot s$, e factors $= t \cdot u \cdot s \cdot t \cdot s \cdot t \cdot s$, e factors $= u \cdot t \cdot s \cdot u \cdot t \cdot s$. Note that G_{72}: $s \circ 3 \circ n \circ 3 \circ t \circ 3 \circ u$, G_{11}: $s \circ 2 \circ n \circ 3 \circ t \circ 4 \circ u$, G_{19}: $s \circ 2 \circ n \circ 3 \circ t \circ 5 \circ u$ have same braid diagram.
Let D be a diagram like

$$s \quad e \quad b \quad t \quad \quad \quad c \quad u$$

Note that G_7 has the same braid diagram.
Let \mathcal{D} be a diagram like

\[s \quad a \quad e \quad b \quad t \quad c \quad u \]

\mathcal{D} represents the relations

\[stustu \cdots = tustus \cdots = ustust \cdots \]

e factors e factors e factors

Note that G_7, G_{11}, and G_{19} have the same braid diagram.
Let \mathcal{D} be a diagram like

$$s \circ e \circ t \circ u$$

\mathcal{D} represents the relations

$$stustu \cdots = tustus \cdots = ustust \cdots$$

e factors e factors e factors

and

$$s^a = t^b = u^c = 1$$
The braid diagrams

Let \mathcal{D} be a diagram like

\[s \begin{array}{c} \circ \\ a \end{array} e \begin{array}{c} \circ \\ b \end{array} t \begin{array}{c} \circ \\ c \end{array} u \]

\mathcal{D} represents the relations

\[stustu \cdots = tustus \cdots = ustust \cdots \]

and

\[s^a = t^b = u^c = 1 \]

We denote by \mathcal{D}_{br} and call \textit{braid diagram} the diagram

\[s \begin{array}{c} \circ \\ \end{array} e \begin{array}{c} \circ \\ \end{array} u \begin{array}{c} \circ \\ t \end{array} \]
The braid diagrams

Let \mathcal{D} be a diagram like

\[s \quad e \quad t \quad u \]

\(s \circ \quad e \quad t \quad u \)

\mathcal{D} represents the relations

\[stustu \cdots = tustus \cdots = ustust \cdots \]

and

\[s^a = t^b = u^c = 1 \]

We denote by \mathcal{D}_{br} and call *braid diagram* the diagram

\[s \quad e \quad u \]

which represents the relations

\[stustu \cdots = tustus \cdots = ustust \cdots \]
The braid diagrams

Let \mathcal{D} be a diagram like $s \circ a \circ e \circ b \circ t \circ c \circ u$. \mathcal{D} represents the relations

\[
\underbrace{stustu\cdots} = \underbrace{tustus\cdots} = \underbrace{ustust\cdots}
\]

e factors e factors e factors

and $s^a = t^b = u^c = 1$

We denote by \mathcal{D}_{br} and call braids diagram the diagram which represents the relations

\[
\underbrace{stustu\cdots} = \underbrace{tustus\cdots} = \underbrace{ustust\cdots}
\]

e factors e factors e factors

Note that

$G_7 : s \circ 2 \circ 3 \circ t \circ 3 \circ u$

$G_{11} : s \circ 2 \circ 3 \circ t \circ 4 \circ u$

$G_{19} : s \circ 2 \circ 3 \circ t \circ 5 \circ u$
The braid diagrams

Let \mathcal{D} be a diagram like

\[s \circ e \circ c \circ u \]

\mathcal{D} represents the relations

\[
\begin{align*}
stustu \cdots &= tustus \cdots = ustust \cdots \\
\text{e factors} &\quad \text{e factors} &\quad \text{e factors}
\end{align*}
\]

and

\[s^a = t^b = u^c = 1 \]

We denote by \mathcal{D}_{br} and call braid diagram the diagram

\[s \circ e \circ u \]

which represents the relations

\[
\begin{align*}
stustu \cdots &= tustus \cdots = ustust \cdots \\
\text{e factors} &\quad \text{e factors} &\quad \text{e factors}
\end{align*}
\]

Note that

\[
\begin{align*}
G_7 : s \circ t \circ u \\
G_{11} : s \circ t \circ u \\
G_{19} : s \circ t \circ u
\end{align*}
\]

have same braid diagram.
For each irreducible complex irreducible group G, there is a diagram D, whose set of nodes $\mathcal{N}(D)$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(D)$, there exists a braid reflection $s \in B_G$ above s such that the set

\[
\{s\}_{s \in \mathcal{N}(D)},
\]

together with the braid relations of D_{br}, is a presentation of B_G.

The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $\bullet_d e \bullet_d$, corresponding to the presentation $s_d = t_d = 1$ and $s t s t s t \cdots \approx \epsilon$ factors $= t s t s t \cdots \approx \epsilon$ factors.
For each irreducible complex irreducible group G, there is a diagram \mathcal{D},
For each irreducible complex irreducible group G, there is a diagram D, whose set of nodes $\mathcal{N}(D)$ is identified with a set of distinguished reflections in G. Theorem: For each $s \in \mathcal{N}(D)$, there exists a braid reflection $s \in B_G$ above s such that the set \{s\} $s \in \mathcal{N}(D)$, together with the braid relations of D_{br}, is a presentation of B_G. The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $s_d e \circ d_t$ corresponding to the presentation $s_d = t_d = 1$ and factors $s_e = t_e$. Michel Broué
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

\begin{equation}
\text{Theorem}
\end{equation}

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set
\begin{equation}
\{s\} \cup \{s \in \mathcal{N}(\mathcal{D})\}
\end{equation}

together with the braid relations of \mathcal{D}, is a presentation of B_G.

The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type \(\ast\), corresponding to the presentation $s = t = 1$ and $ststs \cdots = tsts \cdots$.
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of \mathcal{D}_{br}, is a presentation of B_G.
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of \mathcal{D}_{br}, is a presentation of B_G.

- The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $\begin{array}{c}
 \circlearrowleft \\
 \circ \\
 \circlearrowright
\end{array}$.
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of \mathcal{D}_{br}, is a presentation of B_G.

- The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $\begin{array}{c}
\circled{d} \\
\circled{e} \\
\circled{d}
\end{array}$

 , corresponding to the presentation
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of \mathcal{D}_{br}, is a presentation of B_G.

- The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $\overset{s}{\circ} \overset{e}{\circ} \overset{t}{\circ}$, corresponding to the presentation

\[
s^d = t^d = 1
\]
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of \mathcal{D}_{br}, is a presentation of B_G.

- The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $\begin{tikzpicture} \node[asymmetry] (d) at (0,0) {d}; \node[asymmetry] (e) at (1,0) {e}; \node[asymmetry] (d) at (2,0) {d}; \node[asymmetry] (s) at (0,0) {s}; \node[asymmetry] (t) at (2,0) {t}; \draw (s) edge (d) (d) edge (e) (e) edge (d) (d) edge (t); \end{tikzpicture}$, corresponding to the presentation

\[s^d = t^d = 1 \text{ and } \underbrace{ststs \cdots}_{\text{e factors}} = \underbrace{tstst \cdots}_{\text{e factors}} \]
The group G_{18} has diagrams corresponding to the presentation $s_5 t_3 = 1$ and $stst = tst$.

The group G_{31} has diagrams corresponding to the presentation $s_2 t_2 = 1$, $uv = vu$, $sw = ws$, $vw = wv$, $sut = uts = tsu$, $svs = vsv$, $tv t = vtv$, $t wt = wt w$, $uw u = uw u$.

Michel Broué
Reflection groups, braids, Hecke algebras
The group G_{18} has diagram \[
\begin{array}{c}
\circ & \circ & \circ \\
 & s & t \\
\end{array}
\] corresponding to the presentation
\[
s^5 = t^3 = 1 \text{ and } stst = tsts.
\]
• The group G_{18} has diagram corresponding to the presentation

$$s^5 = t^3 = 1 \text{ and } stst = tsts.$$

• The group G_{31} has diagram
The group G_{18} has diagram corresponding to the presentation
\[s^5 = t^3 = 1 \text{ and } stst = tsts. \]

The group G_{31} has diagram corresponding to the presentation
\[\text{corresponding to the presentation} \]
\[s^5 = t^3 = 1 \text{ and } stst = tsts. \]
The group G_{18} has diagram $\begin{array}{c}
\circ \quad \circ \\
\circ \quad \circ \\
\circ \quad \circ
\end{array}$ corresponding to the presentation

$$s^5 = t^3 = 1 \text{ and } stst = tsts.$$

The group G_{31} has diagram $\begin{array}{c}
\circ \quad \circ \quad \circ \\
\circ \quad \circ \quad \circ \\
\circ \quad \circ \quad \circ
\end{array}$ corresponding to the presentation

$$s^2 = t^2 = u^2 = v^2 = w^2 = 1,$$
The group G_{18} has diagram corresponding to the presentation

\[s^5 = t^3 = 1 \text{ and } stst = tsts. \]

The group G_{31} has diagram corresponding to the presentation

\[
\begin{align*}
 s^2 &= t^2 = u^2 = v^2 = w^2 = 1, \\
 uv &= vu, \quad sw = ws, \quad vw = vw, \quad sut &= uts = tsu,
\end{align*}
\]
• The group G_{18} has diagram $\begin{array}{c} 5 \\ \hline s \\ \hline 3 \\ \hline t \end{array}$ corresponding to the presentation

$$s^5 = t^3 = 1 \text{ and } stst = tsts.$$

• The group G_{31} has diagram $\begin{array}{c} 2 \\ \hline s \\ \hline 2 \\ \hline t \\ \hline 2 \\ \hline w \end{array}$ corresponding to the presentation

$$s^2 = t^2 = u^2 = v^2 = w^2 = 1,$$

$$uv = vu, \ \text{sw} = ws, \ \text{vw} = wv, \ \text{sut} = uts = tsu,$$

$$svs = vsv, \ tvt = vtv, \ twt = wtw, \ wuw = uwu.$$
More on the work of Bessis

• Solution of an old conjecture

Theorem

The space V_{reg} is a $K(\pi,1)$.

• Springer's theory of regular elements

An element $g \in G$ is ζ-regular if g has a regular eigenvector for the eigenvalue ζ.

Denote by $V(g,\zeta)$ the ζ-eigenspace of g in V.

Theorem (Springer, 1974)

Let $g \in G$ be d-regular. Then $C_G(g)$ is a frg on $V(g,\zeta)$, with set of degrees $\{d_i | d_i \text{ divides } d\}$.

Idea of proof: show that $C_G(g)$ has polynomial invariants on $V(g,\zeta)$.

Michel Broué

Reflection groups, braids, Hecke algebras
More on the work of Bessis

- Solution of an old conjecture

Theorem

The space V_{reg} is a $K(\pi, 1)$.

- Springer's theory of regular elements

An element $g \in G$ is ζ-regular if g has a regular eigenvector for the eigenvalue ζ.

Denote by $V(g, \zeta)$ the ζ-eigenspace of g in V.

Theorem (Springer, 1974)

Let $g \in G$ be d-regular. Then $C_G(g)$ is a frg on $V(g, \zeta)$, with set of degrees $\{d_i | d_i \text{ divides } d\}$.

Idea of proof: show that $C_G(g)$ has polynomial invariants on $V(g, \zeta)$.
More on the work of Bessis

- Solution of an old conjecture

Theorem

The space V^{reg} is a $K(\pi, 1)$.

Michel Broué

Reflection groups, braids, Hecke algebras
More on the work of Bessis

- Solution of an old conjecture

Theorem

The space V^reg is a $K(\pi, 1)$.

- Springer’s theory of regular elements
More on the work of Bessis

• Solution of an old conjecture

Theorem

The space V^{reg} is a $K(\pi, 1)$.

• Springer’s theory of regular elements

An element $g \in G$ is ζ-regular if g has a regular eigenvector for the eigenvalue ζ.
More on the work of Bessis

• Solution of an old conjecture

Theorem

The space V^{reg} is a $K(\pi,1)$.

• Springer’s theory of regular elements

An element $g \in G$ is ζ-regular if g has a regular eigenvector for the eigenvalue ζ.
Denote by $V(g, \zeta)$ the ζ-eigenspace of g in V.
More on the work of Bessis

• Solution of an old conjecture

Theorem

The space V^{reg} is a $K(\pi, 1)$.

• Springer’s theory of regular elements

An element $g \in G$ is ζ-regular if g has a regular eigenvector for the eigenvalue ζ.
Denote by $V(g, \zeta)$ the ζ-eigenspace of g in V.

Theorem (Springer, 1974)

Let $g \in G$ be d-regular. Then $C_G(g)$ is a frg on $V(g, \zeta)$, with set of degrees

$$\{d_i \mid d \text{ divides } d_i\}.$$
More on the work of Bessis

• Solution of an old conjecture

Theorem

The space V^{reg} is a $K(\pi, 1)$.

• Springer’s theory of regular elements

An element $g \in G$ is ζ-regular if g has a regular eigenvector for the eigenvalue ζ.
Denote by $V(g, \zeta)$ the ζ-eigenspace of g in V.

Theorem (Springer, 1974)

Let $g \in G$ be d-regular. Then $C_G(g)$ is a frg on $V(g, \zeta)$, with set of degrees

$$\{d_i \mid d \text{ divides } d_i\}.$$

Idea of proof: show that $C_G(g)$ has polynomial invariants on $V(g, \zeta)$.

Examples

\[W = S \text{in its natural permutation representation on } V = C_n. \]

Assume that \(d \mid r \).

Then the product of \(r/d \) disjoint \(d \)-cycles is \(d \)-regular, with centralizer \(C_d \wr S_r/d \), with degrees \(\{ d^i | d \text{ divides } d^i \} = \{ d, 2d, \ldots, d \cdot r/d = r \} \).

\[G = W(F_4), \text{ a Weyl group. There exist } 3\text{-regular elements in } G. \]

The degrees of \(W(F_4) \) are 2, 6, 8, 12, so the centralizer has degrees 6, 12: It is the complex reflection group \(G_5 \).

So, even if \(G \) is a Weyl group, \(C_G \) may be a truly complex reflection group.
Examples

- \(\mathcal{W} = \mathfrak{S}_r \) in its natural permutation representation on \(V = \mathbb{C}^n \). Assume that \(d \mid r \).
Examples

- $W = \mathfrak{S}_r$ in its natural permutation representation on $V = \mathbb{C}^n$. Assume that $d|r$.
 Then the product of r/d disjoint d-cycles is d-regular, with centralizer $C_d \wr \mathfrak{S}_{r/d}$, with degrees

\[
\{ d_i \mid d \text{ divides } d_i \} = \{ d, 2d, \ldots, d \cdot r/d = r \}.
\]
Examples

• \(W = \mathfrak{S}_r \) in its natural permutation representation on \(V = \mathbb{C}^n \). Assume that \(d \mid r \).

Then the product of \(r/d \) disjoint \(d \)-cycles is \(d \)-regular, with centralizer \(C_d \wr \mathfrak{S}_{r/d} \), with degrees

\[
\{ d_i \mid d \text{ divides } d_i \} = \{ d, 2d, \ldots, d \cdot \frac{r}{d} = r \}.
\]

• \(G = W(F_4) \), a Weyl group. There exist 3-regular elements in \(G \).
Examples

- $W = \mathfrak{S}_r$ in its natural permutation representation on $V = \mathbb{C}^n$. Assume that $d|r$. Then the product of r/d disjoint d-cycles is d-regular, with centralizer $C_d \wr S_{r/d}$, with degrees

$$\{ d_i \mid d \text{ divides } d_i \} = \{ d, 2d, \ldots, d \cdot r/d = r \}.$$

- $G = W(F_4)$, a Weyl group. There exist 3-regular elements in G. The degrees of $W(F_4)$ are 2, 6, 8, 12,
Examples

- $W = S_r$ in its natural permutation representation on $V = \mathbb{C}^n$. Assume that $d \mid r$.
 Then the product of r/d disjoint d-cycles is d-regular, with centralizer $C_d \wr S_{r/d}$, with degrees
 \[
 \{d_i \mid d \text{ divides } d_i\} = \{d, 2d, \ldots, d \cdot r/d = r\}.
 \]

- $G = W(F_4)$, a Weyl group. There exist 3-regular elements in G. The degrees of $W(F_4)$ are 2, 6, 8, 12, so the centralizer has degrees 6, 12: It is the complex reflection group G_5.
Examples

- \(W = \mathfrak{S}_r \) in its natural permutation representation on \(V = \mathbb{C}^n \).
 Assume that \(d | r \).
 Then the product of \(r/d \) disjoint \(d \)-cycles is \(d \)-regular, with centralizer \(C_d \wr \mathfrak{S}_{r/d} \), with degrees

 \[
 \{ d_i \mid d \text{ divides } d_i \} = \{ d, 2d, \ldots, d \cdot r/d = r \}.
 \]

- \(G = W(F_4) \), a Weyl group. There exist 3-regular elements in \(G \). The degrees of \(W(F_4) \) are 2, 6, 8, 12, so the centralizer has degrees 6, 12:
 It is the complex reflection group \(G_5 \).

So, even if \(G \) is a Weyl group, \(C_G(g) \) may be a truly complex reflection group.
Springer’s theory of regular elements in complex reflections groups lifts to braid groups

Theorem (Bessis, 2007)

\[\zeta_d = e^{2i\pi/d}. \]

The \(\zeta_d \)-regular elements in \(G \) are the images of the \(d \)-th roots of \(\pi \).

All \(d \)-th roots of \(\pi \) are conjugate in \(B_G \).

Let \(g \) be a \(d \)-th root of \(\pi \), with image \(g \) in \(G \). Then \(C_{B_G}(g) \) is the braid group of \(C_G(g) \).
Springer's theory of regular elements in complex reflections groups lifts to braid groups

Theorem (Bessis, 2007)

Let $\zeta_d := e^{2i\pi/d}$. All d-th roots of π are conjugate in B_G. Let g be a d-th root of π, with image g in G. Then $C_{B_G}(g)$ is the braid group of $C_G(g)$.
Springer’s theory of regular elements in complex reflections groups lifts to braid groups

Theorem (Bessis, 2007)

Let $\zeta_d := e^{2i\pi/d}$.

1. The ζ_d–regular elements in G are the images of the d-th roots of π.
Springer’s theory of regular elements in complex reflections groups lifts to braid groups

Theorem (Bessis, 2007)

Let $\zeta_d := e^{2i\pi/d}$.

1. The ζ_d–regular elements in G are the images of the d-th roots of π.
2. All d-th roots of π are conjugate in B_G.
Springer’s theory of regular elements in complex reflections groups lifts to braid groups

Theorem (Bessis, 2007)

Let $\zeta_d := e^{2i\pi/d}$.

1. The ζ_d–regular elements in G are the images of the d-th roots of π.
2. All d-th roots of π are conjugate in B_G.
3. Let g be a d-th root of π, with image g in G. Then $C_{B_G}(g)$ is the braid group of $C_G(g)$.
A monodromy representation

(after Knizhnik–Zamolodchikov, Cherednik, Dunkl, Opdam, Kohno, Broué-Malle-Rouquier)

For $H \in A$, let α_H be a linear form with kernel H, and $\omega_H := \frac{1}{2} i \pi d \alpha_H \alpha_H$. Each family $(z_H)_H \in A \in \prod_{H \in A} \mathbb{C}G_H$ defines a G-invariant differential form on V_{reg} with values in $\mathbb{C}G$, hence a linear differential equation $df = \omega f$ for $f : V_{reg} \rightarrow \mathbb{C}G$, i.e., $\forall v \in V, x \in V_{reg}$, $df(x)(v) = \frac{1}{2} i \pi \sum_{H \in A} \alpha_H(v) \alpha_H(x) z_H f(x)$.
For $H \in \mathcal{A}$, let α_H be a linear form with kernel H,

Each family $(z_H)_{H \in \mathcal{A}}$ defines a G-invariant differential form on V_{reg} with values in C^G.

Hence a linear differential equation $df = \omega f$ for $f : V_{\text{reg}} \to C^G$, i.e.,

$$
\forall v \in V, \ x \in V_{\text{reg}},
\quad df(x)(v) = \frac{1}{2}i\pi \sum_{H \in \mathcal{A}} \alpha_H(v) \alpha_H(x) z_H f(x)
$$
A monodromy representation

For $H \in \mathcal{A}$, let α_H be a linear form with kernel H, and

$$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$
A monodromy representation

For $H \in \mathcal{A}$, let α_H be a linear form with kernel H, and

$$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$

Each family

$$(z_H)_{H \in \mathcal{A}} \in \left(\prod_{H \in \mathcal{A}} \mathbb{C}G_H \right)^G$$
A monodromy representation

- For $H \in \mathcal{A}$, let α_H be a linear form with kernel H, and
 \[\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H} \]

- Each family
 \[(z_H)_{H \in \mathcal{A}} \in \left(\prod_{H \in \mathcal{A}} \mathbb{C} G_H \right)^G \]
 defines a G-invariant differential form on V^{reg} with values in $\mathbb{C} G$

 \[\omega := \sum_{H \in \mathcal{A}} z_H \omega_H \]
A monodromy representation

- For $H \in \mathcal{A}$, let α_H be a linear form with kernel H, and
 \[\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H} \]

- Each family
 \[(z_H)_{H \in \mathcal{A}} \in \left(\prod_{H \in \mathcal{A}} \mathbb{C}G_H \right)^G \]
 defines a G-invariant differential form on V^{reg} with values in $\mathbb{C}G$
 \[\omega := \sum_{H \in \mathcal{A}} z_H \omega_H \]
 hence a linear differential equation $df = \omega f$ for $f : V^{\text{reg}} \to \mathbb{C}G$,
A monodromy representation

- For $H \in \mathcal{A}$, let α_H be a linear form with kernel H, and

$$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$

- Each family

$$(z_H)_{H \in \mathcal{A}} \in \left(\prod_{H \in \mathcal{A}} \mathbb{C} G_H \right)^G$$

- defines a G-invariant differential form on V^{reg} with values in $\mathbb{C} G$

$$\omega := \sum_{H \in \mathcal{A}} z_H \omega_H$$

- hence a linear differential equation $df = \omega f$ for $f : V^{\text{reg}} \to \mathbb{C} G$, i.e.,

$$\forall v \in V, \ x \in V^{\text{reg}}, \ \ df(x)(v) = \frac{1}{2i\pi} \sum_{H \in \mathcal{A}} \frac{\alpha_H(v)}{\alpha_H(x)} z_H f(x)$$
For $H \in \mathcal{A}$, \{

- $G \vee H$ is the group of characters of G_H,
- for $\theta \in G \vee H$, $e_{H,\theta}$ is the corresponding primitive idempotent in C_{G_H}.

We set $q_H := \exp \left(-2i\pi/e_H \right) z_H =: \sum_{\theta \in G \vee H} q_{H,\theta} e_{H,\theta}$.

Theorem 1

The form ω is integrable, hence defines a group morphism $\rho : B_G \to (C_{G_H}) \times$.

2

Whenever s_H, γ is a braid reflection around H, there is $u_H \in (C_{G_H}) \times$ such that $\rho(s_H, \gamma) = u_H(q_{H,s_H})u_H^{-1}$. In particular, we have $\prod_{\theta \in G \vee H} (\rho(s_H, \gamma) - q_{H,\theta}) = 0$.
For $H \in \mathcal{A}$,

\begin{align*}
\begin{cases}
\cdot G_H^\vee & \text{is the group of characters of } G_H,
\end{cases}
\end{align*}
For $H \in A$, \\
\begin{equation*}
\begin{aligned}
\bullet & \quad G^\vee_H \text{ is the group of characters of } G_H, \\
\bullet & \quad \text{for } \theta \in G^\vee_H, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_H
\end{aligned}
\end{equation*}
For $H \in \mathcal{A}$, \[\begin{aligned}
\bullet & \quad G_H^\vee \text{ is the group of characters of } G_H, \\
\bullet & \quad \text{for } \theta \in G_H^\vee, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_H
\end{aligned}\]

We set \[q_H := \exp \left(\frac{-2i\pi}{e_H}z_H\right) =: \sum_{\theta \in G_H^\vee} q_{H,\theta}e_{H,\theta}\]
For $H \in \mathcal{A}$, \[
\begin{align*}
\begin{cases}
\quad & G_H^\vee \text{ is the group of characters of } G_H, \\
\quad & \text{for } \theta \in G_H^\vee, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_H
\end{cases}
\end{align*}
\]

We set \[q_H := \exp \left(-2i \pi / e_H \right) z_H =: \sum_{\theta \in G_H^\vee} q_{H,\theta} e_{H,\theta} \]

Theorem
For $H \in \mathcal{A}$, \begin{itemize}
 \item G_H^\vee is the group of characters of G_H,
 \item for $\theta \in G_H^\vee$, $e_{H,\theta}$ is the corresponding primitive idempotent in $\mathbb{C}G_H$
\end{itemize}

We set $q_H := \exp \left(\left(-\frac{2i\pi}{e_H} \right) z_H \right) =: \sum_{\theta \in G_H^\vee} q_{H,\theta} e_{H,\theta}$

Theorem 1

The form ω is integrable, hence defines a group morphism

$$\rho : B_G \longrightarrow (\mathbb{C}G)^\times.$$
For $H \in A$, \(G^\vee_H \) is the group of characters of G_H, and for $\theta \in G^\vee_H$, $e_{H, \theta}$ is the corresponding primitive idempotent in $\mathbb{C}G_H$.

We set $q_H := \exp \left(\left(-\frac{2i\pi}{e_H} \right) z_H \right) =: \sum_{\theta \in G^\vee_H} q_{H, \theta} e_{H, \theta}$

Theorem

1. The form ω is integrable, hence defines a group morphism $\rho : B_G \longrightarrow (\mathbb{C}G)^\times$.

2. Whenever $s_{H, \gamma}$ is a braid reflection around H, there is $u_H \in (\mathbb{C}G)^\times$ such that $\rho(s_{H, \gamma}) = u_H(q_{H}s_H)u_H^{-1}$.
For $H \in \mathcal{A}$, \(G_H^\vee \) is the group of characters of G_H,
- for $\theta \in G_H^\vee$, $e_{H, \theta}$ is the corresponding primitive idempotent in $\mathbb{C}G_H$

We set
\[
q_H := \exp\left((-2i\pi/e_H)z_H\right) = \sum_{\theta \in G_H^\vee} q_{H, \theta} e_{H, \theta}
\]

Theorem

1. The form ω is integrable, hence defines a group morphism
\[
\rho : B_G \longrightarrow (\mathbb{C}G)^\times.
\]

2. Whenever $s_{H, \gamma}$ is a braid reflection around H, there is $u_H \in (\mathbb{C}G)^\times$ such that
\[
\rho(s_{H, \gamma}) = u_H(q_Hs_H)u_H^{-1}
\]

In particular, we have
\[
\prod_{\theta \in G_H^\vee} (\rho(s_{H, \gamma}) - q_{H, \theta}\theta(s_H)) = 0.
\]
Hecke algebras

Every complex reflection group G has an Artin-like presentation:

G_2: s_2, t_2,

G_4: s_3, t_3,

and a field of realization $Q_G := Q(\{\text{tr} V(g) | g \in G\})$.

The associated generic Hecke algebra is defined from such a presentation:

$H(G_2) := <S, T; \begin{cases} STSTST = TSTSTS \quad (S - q_0)(S - q_1) = 0 \\ (T - r_0)(T - r_1) = 0 \end{cases}>$

$H(G_4) := <S, T; \begin{cases} STS = TST \quad (S - q_0)(S - q_1)(S - q_2) = 0 \end{cases}>$
Every complex reflection group G has an Artin-like presentation:

$G_2 : \begin{array}{l} 2 \\ s \end{array} \begin{array}{l} 2 \\ t \end{array}$, \quad $G_4 : \begin{array}{l} 3 \\ s \end{array} \begin{array}{l} 3 \\ t \end{array}$
Every complex reflection group G has an Artin-like presentation:

\[G_2 : \begin{array}{cc}
& 2 \\
_ & _ \\
s & t
\end{array} , \quad G_4 : \begin{array}{cc}
& 3 \\
_ & _ \\
s & t
\end{array} \]

and a field of realization $\mathbb{Q}_G := \mathbb{Q}(\{\text{tr}_V(g) \mid (g \in G)\}).$
Every complex reflection group G has an Artin-like presentation:

$$G_2 : \begin{array}{c} \circ \circ \\ s \quad t \end{array}$$

$$G_4 : \begin{array}{c} \circ \circ \\ s \quad t \end{array}$$

and a field of realization $\mathbb{Q}_G := \mathbb{Q}(\{\text{tr}_V(g) \mid (g \in G)\})$.

The associated generic Hecke algebra is defined from such a presentation:

$$\mathcal{H}(G_2) := \langle S, T \rangle \left\{ \begin{array}{l}
STSTST = TSTSTS \\
(S - q_0)(S - q_1) = 0 \\
(T - r_0)(T - r_1) = 0
\end{array} \right.$$

$$\mathcal{H}(G_4) := \langle S, T \rangle \left\{ \begin{array}{l}
STS = TST \\
(S - q_0)(S - q_1)(S - q_2) = 0
\end{array} \right.$$
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^\pm 1), (r_j^\pm 1), \ldots]$.
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a **split semisimple algebra** over a field obtained by extracting suitable roots of the indeterminates:

 - Through the specialisation $x_i \mapsto 1$, $y_j \mapsto 1$, ..., that algebra becomes the group algebra of G over $\mathbb{Q}G$.
 - The above specialisation defines a bijection $\text{Irr}(G) \xrightarrow{\sim} \text{Irr}(\mathcal{H}(G))$, $\chi \mapsto \chi_{\mathcal{H}}$.
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a \textit{split semisimple algebra} over a field obtained by extracting suitable roots of the indeterminates:

 Here, $G = \text{d} \overset{m}{\longrightarrow} \text{e} \cdots$, then for
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

 \[
 \text{if } G = \overset{d}{\underset{s}{\square}} \overset{m}{\underset{t}{\circ}} \cdots, \text{ then for } \]

 \[
 (x_i^{\mu(\mathbb{Q}_G)}) = \zeta_d^{-i} q_i \quad i = 0, 1, \ldots, d - 1 \quad ; \quad (y_j^{\mu(\mathbb{Q}_G)}) = \zeta_e^{-j} r_j \quad j = 0, 1, \ldots, e - 1
 \]
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

 if $G = \circlearrowright_m \stackrel{s}{\circlearrowright} \stackrel{e}{\circlearrowright} \cdots$, then for

 $$
 (x_i^{\mu(\mathbb{Q}G)} = \zeta_d^{-i} q_i)_{i=0,1,\ldots,d-1}, \quad (y_j^{\mu(\mathbb{Q}G)} = \zeta_e^{-j} r_j)_{j=0,1,\ldots,e-1}
 $$

 the algebra $\mathbb{Q}_G((x_i), (y_j), \ldots))\mathcal{H}(G)$ is split semisimple,
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

 If $G = \square \overbrace{d \quad m \quad e}^s \overbrace{t}^e \cdots$, then for

 $$
 (x_i|_{\mu(\mathbb{Q}_G)}) = \zeta_d^{-i} q_i \quad i=0,1,\ldots,d-1, \quad (y_j|_{\mu(\mathbb{Q}_G)}) = \zeta_e^{-j} r_j \quad j=0,1,\ldots,e-1
 $$

 the algebra $\mathbb{Q}_G((x_i), (y_j), \ldots) \mathcal{H}(G)$ is split semisimple,

- Through the specialisation $x_i \mapsto 1$ \hspace{0.5em} $y_j \mapsto 1, \ldots$, that algebra becomes the group algebra of G over \mathbb{Q}_G.

Michel Broué \hspace{2.5em} Reflection groups, braids, Hecke algebras
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

 \[
 \text{if } G = \frac{d}{s} \frac{m}{e} \frac{t}{e} \ldots, \quad \text{then for}
 \]

 \[
 (x_i^{\mu(\mathbb{Q}_G)}) = \zeta_d^{-i} q_i \text{ for } i=0,1,\ldots,d-1, \quad (y_j^{\mu(\mathbb{Q}_G)}) = \zeta_e^{-j} r_j \text{ for } j=0,1,\ldots,e-1
 \]

 the algebra $\mathbb{Q}_G((x_i), (y_j), \ldots)) \mathcal{H}(G)$ is split semisimple,

- Through the specialisation $x_i \mapsto 1, y_j \mapsto 1, \ldots$, that algebra becomes the group algebra of G over \mathbb{Q}_G.
- The above specialisation defines a bijection

 \[
 \text{Irr}(G) \overset{\sim}{\rightarrow} \text{Irr}(\mathcal{H}(G)), \quad \chi \mapsto \chi_{\mathcal{H}}.
 \]
There exists a unique linear form $t_q: H(W, q) \rightarrow \mathbb{Z}[q, q^{-1}]$ with the following properties.

1. t_q is a symmetrizing form on the algebra $H(W, q)$.
2. t_q specializes to the canonical linear form on the group algebra.
3. For all $b \in B$, we have $t_q(b \pi) = t_q(b) \pi$.
There exists a unique linear form

\[t_q : \mathcal{H}(W, q) \rightarrow \mathbb{Z}[q, q^{-1}] \]

with the following properties.
There exists a unique linear form

\[t_q : \mathcal{H}(W, q) \rightarrow \mathbb{Z}[q, q^{-1}] \]

with the following properties.

- \(t_q \) is a symmetrizing form on the algebra \(\mathcal{H}(W, q) \).
Theorem–Conjecture

There exists a unique linear form

\[t_q : \mathcal{H}(W, q) \rightarrow \mathbb{Z}[q, q^{-1}] \]

with the following properties.

- \(t_q \) is a symmetrizing form on the algebra \(\mathcal{H}(W, q) \).
- \(t_q \) specializes to the canonical linear form on the group algebra.
There exists a unique linear form

\[t_q : \mathcal{H}(W, q) \to \mathbb{Z}[q, q^{-1}] \]

with the following properties.

- \(t_q \) is a symmetrizing form on the algebra \(\mathcal{H}(W, q) \).
- \(t_q \) specializes to the canonical linear form on the group algebra.
- For all \(b \in B \), we have

\[t_q(b^{-1})^\vee = \frac{t_q(b\pi)}{t_q(\pi)}. \]
The form t_q satisfies the following conditions. As an element of $\mathbb{Z}[q, q^{-1}]$, $t_q(b)$ is multi–homogeneous with degree $\ell H(b)$ in the indeterminates q_H, θ.

If W' is a parabolic subgroup of W, the restriction of t_q to a parabolic sub–algebra $H(W', W, q)$ is the corresponding specialization of $t_q'(W')$.

The canonical forms t_q are hidden behind Lusztig's theory of characters of finite reductive groups, their generic degrees and Fourier transform matrices.
The form t_q satisfies the following conditions.
The form t_q satisfies the following conditions.

- As an element of $\mathbb{Z}[q, q^{-1}]$, $t_q(b)$ is multi–homogeneous with degree $\ell_H(b)$ in the indeterminates $q_{H, \theta}$.
The form t_q satisfies the following conditions.

- As an element of $\mathbb{Z}[q, q^{-1}]$, $t_q(b)$ is multi–homogeneous with degree $\ell_H(b)$ in the indeterminates q, θ.

- If W' is a parabolic subgroup of W, the restriction of t_q to a parabolic sub–algebra $\mathcal{H}(W', W, q)$ is the corresponding specialization of $t_q'(W')$.
The form t_q satisfies the following conditions.

- As an element of $\mathbb{Z}[q, q^{-1}]$, $t_q(b)$ is multi–homogeneous with degree $\ell_H(b)$ in the indeterminates q_H, θ.
- If W' is a parabolic subgroup of W, the restriction of t_q to a parabolic sub–algebra $\mathcal{H}(W', W, q)$ is the corresponding specialization of $t_{q'}(W')$.

The canonical forms t_q are hidden behind Lusztig’s theory of characters of finite reductive groups, their generic degrees and Fourier transform matrices.
Cyclotomic algebras

Let ζ be a root of unity. A ζ–cyclotomic specialisation of the generic Hecke algebra is a morphism

$$\varphi : x_i \mapsto (\zeta^{-1}q)^{m_i}, \ y_j \mapsto (\zeta^{-1}q)^{n_j}, \ldots \ (m_i, n_j \in \mathbb{Z}),$$

which gives rise to a ζ–cyclotomic Hecke algebra $\mathcal{H}_\varphi(G)$.

Michel Broué
Reflection groups, braids, Hecke algebras
Cyclotomic algebras

Let \(\zeta \) be a root of unity. A \(\zeta \)-cyclotomic specialisation of the generic Hecke algebra is a morphism

\[
\varphi : x_i \mapsto (\zeta^{-1} q^{m_i}), \quad y_j \mapsto (\zeta^{-1} q^{n_j}), \ldots \quad (m_i, n_j \in \mathbb{Z}),
\]

which gives rise to a \(\zeta \)-cyclotomic Hecke algebra \(\mathcal{H}_\varphi(G) \).

A 1–cyclotomic Hecke algebra for \(G_2 = \begin{array}{c} \text{2} \\ \hline \text{s} \end{array} \cong \begin{array}{c} \text{2} \\ \hline \text{t} \end{array} \):}

\[
< S, T ; \begin{cases}
STSTST = TSTSTS \\
(S - q^2)(S + 1) = 0 \\
(T - q)(T + 1) = 0
\end{cases} >
\]
A ζ_3–cyclo-tomic Hecke algebra for $B_2(3) = \begin{array}{c} 3 \\ s \end{array} \begin{array}{c} 2 \\ t \end{array}$:

$$< S, T ; \begin{cases} STST = TSTS \\ (S - 1)(S - q)(S - q^2) = 0 \\ (T - q^3)(T + 1) = 0 \end{cases} >$$
A ζ_3–cycloptomic Hecke algebra for $B_2(3) = \begin{array}{c} 3 \\ s \end{array} \begin{array}{c} 2 \\ t \end{array}$:

$$STST = TSTS$$

$$< S, T ; \begin{cases} (S - 1)(S - q)(S - q^2) = 0 \\ (T - q^3)(T + 1) = 0 \end{cases} >$$

Relevance to character theory of finite reductive groups

The unipotent characters in a given d–Harish–Chandra series $\text{UnCh}(G^F; (L, \lambda))$ are described by a suitable ζ_d–cycloptomic Hecke algebra $\mathcal{H}_{G^F}(L, \lambda)$ for the corresponding d–cycloptomic Weyl group $W_{G^F}(L, \lambda)$:

$$\text{UnCh}(G^F; (L, \lambda)) \leftrightarrow \text{Irr}(\mathcal{H}_{G^F}(L, \lambda)).$$