Integrative System Framework for Noninvasive Understanding of Myocardial Tissue Electrophysiology

Linwei Wang, Ken C.L. Wong, Pengcheng Shi

Computational System Biomedicine Laboratory
B. Thomas Golisano College of Computing and Information Sciences
Rochester Institute of Technology

CPP, INI, Cambridge, July 2009
From patient observations to personalized electrophysiology

- Noninvasive observations on specific patient:
 - Structural: tomographic image
 - Functional: projective ECG/BSPM

- In clinical settings, it really has been a sophisticated pattern recognition process to decipher the information.

- How can models offer help?
 - Better models lead to more appropriate constraints in data analysis.
 - Physiological plausibility vs. algorithmic/computational feasibility
 - Volumetric?
 - Ultimately, models have to be personalized to be truly meaningful.
Integrative system perspective

Prior Knowledge: Models
- Built up over many years
- General population

Patient Observations
- Subject-specific information
- Noisy, sparse, incomplete

System Modeling
- System dynamics
- System observations

Individual

Personalized Information Recovery
- Electrical function
- Tissue property
- Latent substrate

Subject

Data Acquisition
- BSP sequence
- Tomographic images

Physiological model constrained statistical framework

- System perspective to recover personalized cardiac electrophysiology
 - (phenomenal) Model constrained data analysis: prior knowledge guides a physiologically meaningful understanding of personal data
 - Data driven model personalization: patient data helps to identify
Volumetric myocardial representation

- Ventricular wall: point cloud

- Fiber structure: mapped from Auckland model

Slice segmentation

Surface mesh

Volume representation

Surface registration

Surface fiber structure

3D fiber structure
Surface body torso representation

- (Isotropic and homogeneous volume conductor)
Cardiac electrophysiological system

Volumetric TMP dynamics model

Personalized 3D-BEM mixed heart-torso model

TMP-to-BSP mapping
System dynamics: volumetric TMP activity

- Diffusion-reaction system: 2-variable ordinary differential equation

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \nabla \cdot (D \nabla u) + f_1(u, v) \\
\frac{\partial v}{\partial t} &= f_2(u, v)
\end{align*}
\]

- Meshfree representation and computation

\[
\begin{align*}
\frac{\partial U}{\partial t} &= -M^{-1}KU + f_1(U, V) \\
\frac{\partial V}{\partial t} &= f_2(U, V)
\end{align*}
\]

- \(u \): excitation variable: TMP
- \(v \): recovery variable: current
- \(D \): diffusion tensor

![Graph showing time series of u and v](graph.png)
System observation: TMP-to-BSP mapping

- Quasi-static electromagnetism
- Poisson’s equation
- Mixed meshfree and boundary element methods

Governing equation

\[\sigma \nabla^2 \phi(r) = \nabla \cdot (D(r) \nabla u(r)) \]

Direct solution method

\[
\begin{align*}
&c(\xi) \phi(\xi) + \int_{\Gamma_i} \phi(r) q^*(\xi, r) d\Gamma_i - \int_{\Gamma_i} \frac{\partial \phi(r)}{\partial n} \phi^*(\xi, r) d\Gamma_i \\
&= \frac{1}{4\pi\sigma} \left(\int_{\Gamma_i} \frac{D_i(r)}{|\xi - r|} \frac{\partial u(r)}{\partial n} d\Gamma_i - \int_{\Omega_i} \nabla \frac{1}{|\xi - r|} \cdot (D_i(r) \nabla u(r)) d\Omega_i \right)
\end{align*}
\]

Surface integral: BEM

Volume integral: meshfree
State space system representation

\[
\begin{align*}
\frac{\partial U}{\partial t} &= -M^{-1}KU + f_1(U, V, \theta) \\
\frac{\partial V}{\partial t} &= f_2(U, V, \theta)
\end{align*}
\]

TMP activity:
\[
\Phi = HU
\]

TMP-to-BSP mapping:
- Nonlinear dynamic model
 - Local linearization
 - Temporal discretization
- Large-scale & high-dimensional system
 - U, V is of dimension 2000-3000

Uncertainty:
\[\omega, \mu\]

Monte Carlo integration

Prediction
Correction

Nonlinear Transformation

Parameter:

Uncertainty:
\[\omega, \mu\]
Sequential data assimilation

- Combination of unscented transform (UT) and Kalman filter: unscented Kalman filter

Prediction: UT
- (MC integration + deterministic sampling)
- Preserve intact model nonlinearity
- Black-box discretization

Correction: KF update
- Computational feasibility
TMP estimator: reconstructing TMP from BSP

\[
\hat{U}_k = U_k - K_k u (Y_k - H U_k) \\
\hat{P}_{uk} = (I - K_k u H) P_{uk}
\]

\[
K_k u = P_{uk} H^T (HP_{uk} H^T + R_{v_k})^{-1}
\]

\[
\hat{\xi}_k = \sum_{i=0}^n W_i^m \xi_{k|k-1,i} \pm \sqrt{(n/2 + \lambda) \hat{P}_{uk-1}}
\]

Ensemble generation (unscented transform)

\[
S_k^n = \begin{pmatrix} \hat{U}_{k-1} & \hat{U}_{k-1} + \sqrt{(n/2 + \lambda) \hat{P}_{uk-1}} \\ \hat{U}_{k-1} - \sqrt{(n/2 + \lambda) \hat{P}_{uk-1}} \end{pmatrix}
\]

Prediction (MC integration)

\[
\begin{align*}
\bar{U}_k &= \sum_{i=0}^n W_i^m \xi_{k|k-1,i} \\
\bar{V}_k &= \sum_{i=0}^n W_i^m \xi_{k|k-1,i} \\
P_{uk} &= \sum_{i=0}^n W_i^c (\xi_{k|k-1,i} - \bar{U}_k)(\xi_{k|k-1,i} - \bar{U}_k)^T + Q_{\omega_k}^u
\end{align*}
\]
Parameter estimator: reconstructing model parameters

Initialization
\[
\begin{pmatrix} \hat{\Theta}_0 \\ \hat{P}_{\Theta_0} \end{pmatrix}
\]

Ensemble generation (unscented transform)
\[
\{\varphi_{k-1,i}\}_{i=0}^{2n} = \begin{pmatrix} \hat{\Theta}_{k-1} \\ \hat{\Theta}_{k-1} \pm \sqrt{n+\lambda}\hat{P}_{\Theta_{k-1}} \end{pmatrix}
\]

Prediction (MC integration)
\[
\begin{align*}
\zeta_{k|k-1,i}^{(\Theta)} &= \tilde{F}_d(\hat{U}_{k-1}, \varphi_{k-1,i}) \\
\Psi_{k|k-1,i}^{(\Theta)} &= \tilde{H}\zeta_{k|k-1,i}^{(\Theta)} \\
\hat{P}_{\Theta_k} &= \hat{P}_{\Theta_{k-1}} + Q_{\omega_{\Theta_k}} \\
\overline{Y}_{k}^{(\Theta)} &= \sum_{i=0}^{2n} W_i^m \Psi_{k|k-1,i} \\
P_{y_k} &= \sum_{i=0}^{2n} W_i^c (\Psi_{k|k-1,i}^{(\Theta)} - \overline{Y}_{k}^{(\Theta)}) (\Psi_{k|k-1,i}^{(\Theta)} - \overline{Y}_{k}^{(\Theta)})^T + R_{\nu_k} \\
P_{\Theta_{k|y_k}} &= \sum_{i=0}^{2n} W_i^c (\varphi_{k-1,i} - \hat{\Theta}_{k-1}) (\Psi_{k|k-1,i}^{(\Theta)} - \overline{Y}_{k}^{(\Theta)})^T
\end{align*}
\]

Correction (KF update)
\[
\begin{align*}
\hat{\Theta}_k &= \hat{\Theta}_{k-1} + K_k^{(\Theta)} (Y_k - \overline{Y}_{k}^{(\Theta)}) \\
\hat{P}_{\Theta_k} &= P_{\Theta_k} - K_k^{(\Theta)} P_{y_k} K_k^{(\Theta)T}
\end{align*}
\]

Filter Gain
\[
K_k^{(\Theta)} = P_{\Theta_k y_k} P_{y_k}^{-1}
\]

Nonlinear measurement model
Experiments (PhysioNet.org): electrocardiographic imaging of myocardial infarction

- Four post-MI patients
 - MRI → personalized heart-torso structures
 - BSP
 - Gd-enhanced MRI → gold standard

Cardiac: 1.33×1.33×8mm
Whole-body: 1.56×1.56×5mm

123 electrodes, QRST @ 2KHz sampling
Goals and procedures

- Quantitative reconstruction of tissue property and electrical functioning
 - Tissue excitability
 - TMP dynamics

Procedures
- Initialization – TMP estimation with general normal model
- Simultaneous estimation of TMP and excitability
- Identify arrhythmogenic substrates (imaging + quantitative evaluation)
- Localize abnormality in TMP and excitability
- Investigate the correlation of local abnormality between TMP and excitability
Result: case II

- Infarct location: septal-inferior basal-middle LV
Result: case II

- Black contour: abnormal TMP dynamics
- Color: recovered tissue excitability

- Location, extent, and 3D complex shape of infarct tissues
- Correlation of abnormality between electrical functions and tissue property
 - Abnormal electrical functioning occurs within infarct zone
 - Border zone exhibits normal electrical functioning
Delay enhanced MRI registered with epicardial electrical signals

Delayed activation: 4-9
Infarct: 3-14

Result: case I

- Infarct: septal-anterior basal LV, septal middle LV
Result: case III

- Infarct: inferior basal-middle LV, lateral middle-apical LV
Result: case V

- Infarct: anterior basal LV, septal middle-apical LV
Quantitative validation

<table>
<thead>
<tr>
<th></th>
<th>case 1</th>
<th>case 2</th>
<th>case 3</th>
<th>case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference</td>
<td>Results</td>
<td>Reference</td>
<td>Results</td>
</tr>
<tr>
<td>EP</td>
<td>31%</td>
<td>17%</td>
<td>30%</td>
<td>20%</td>
</tr>
<tr>
<td>CE</td>
<td>8</td>
<td>9</td>
<td>3/4/9/10</td>
<td>9</td>
</tr>
<tr>
<td>SO</td>
<td>N/A</td>
<td>97%</td>
<td>N/A</td>
<td>100%</td>
</tr>
<tr>
<td>segments</td>
<td>1-3,8-9</td>
<td>1-3,8-9</td>
<td>3,4,9,10</td>
<td>3,4,9,10</td>
</tr>
</tbody>
</table>

- EP: Percentage of infarct in ventricular mass
- CE: Center of infarct, labeled by segment
- Segments: A set of segments which contain infarct
- SO: Percentage of correct identification compared to gold standard
Comparison with existent results

<table>
<thead>
<tr>
<th></th>
<th>Our results</th>
<th>Mneimneh</th>
<th>Dawoud</th>
<th>Farina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>case 3</td>
<td>case 4</td>
<td>case 3</td>
<td>case 4</td>
</tr>
<tr>
<td>EPD</td>
<td>18%</td>
<td>4%</td>
<td>25%</td>
<td>2%</td>
</tr>
<tr>
<td>CED</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SO</td>
<td>100%</td>
<td>100%</td>
<td>90%</td>
<td>25%</td>
</tr>
</tbody>
</table>

- EPD: difference of EP from gold standard
- CED: difference of CE from gold standard

- *Dawoud et al*: epicardial potential imaging
- *Farina et al*: optimization of infarct model
- *Mneimneh et al*: pure ECG analysis
Conclusion

- Personalized noninvasive imaging of volumetric cardiac electrophysiology

Noninvasive observations → Personalized volumetric cardiac electrophysiology → Latent substrates