Confidence Intervals for Quantiles When Applying Variance-Reduction Techniques

Fang Chu1 \quad Marvin K. Nakayama2

1Department of Information Systems
New Jersey Institute of Technology, USA

2Department of Computer Science
New Jersey Institute of Technology, USA

8th International Workshop on Rare Event Simulation
(RESIM 2010)
Outline

1 Introduction
 - Motivation
 - Bahadur Representations

2 Variance-Reduction Techniques for Quantiles
 - Framework for VRTs
 - Example: Importance Sampling
 - Asymptotic Results for VRT Quantile Estimators
 - Confidence Intervals for Quantile with VRT

3 Empirical Results

4 Conclusions
Quantiles

- Random variable X with CDF F.
- For $0 < p < 1$, the p-quantile of F is

$$\xi_p = F^{-1}(p) \equiv \inf\{x : F(x) \geq p\}$$

Applications
- Project planning
- Value-at-risk in finance
Confidence Intervals (CIs) for Quantiles

- Typical approach to estimate $\xi_p = F^{-1}(p)$ using simulation
 1. Generate n samples, and compute \hat{F}_n as estimator of F.
 - e.g., Crude Monte Carlo (CMC): $X_1, \ldots, X_n \sim F$ i.i.d., and
 \[
 \hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x)
 \]
 2. Estimator of ξ_p is $\hat{\xi}_{p,n} = \hat{F}_n^{-1}(p)$
Typical approach to estimate $\xi_p = F^{-1}(p)$ using simulation

1. Generate n samples, and compute \hat{F}_n as estimator of F.
 - e.g., Crude Monte Carlo (CMC): $X_1, \ldots, X_n \sim F$ i.i.d., and
 \[
 \hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x)
 \]

2. Estimator of ξ_p is $\hat{\xi}_{p,n} = \hat{F}_n^{-1}(p)$

CI for ξ_p gives measure of error of estimator $\hat{\xi}_{p,n}$

1. Prove estimator $\hat{\xi}_{p,n}$ satisfies CLT
 \[
 \sqrt{n}(\hat{\xi}_{p,n} - \xi_p) \Rightarrow N(0, \kappa_p^2)
 \]
 - CMC: $\kappa_p = \sqrt{p(1-p)/f(\xi_p)}$, where $f = F'$.
2. Provide consistent estimator $\hat{\kappa}_{p,n}$ for κ_p to get 95% CI for ξ_p:
 \[
 \left(\hat{\xi}_{p,n} \pm 1.96 \frac{\hat{\kappa}_{p,n}}{\sqrt{n}}\right)
 \]
Confidence Intervals (CIs) for Quantiles

- When using crude Monte Carlo (CMC), CI may be wide
 - Especially when $p \approx 0$ or $p \approx 1$.
- Variance-reduction techniques (VRTs) for quantiles
 - Importance sampling (IS): Glynn (1996)
 - IS and stratified sampling: Glasserman et al. (2000)
- Above papers prove CLTs for VRT quantile estimators.
 - None gives consistent estimator of variance κ_p^2 in CLT.
- We provide consistent estimators of κ_p^2 to get CI when using VRT.
 - Approach based on Bahadur-Ghosh representation.
Bahadur Representation for CMC

Heuristic argument:

- Suppose $f(\xi_p) > 0$, where $f = F'$.
- CMC: $\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x)$
- $\hat{F}_n \approx F$ so $\hat{\xi}_p, n \approx \xi_p$.
- Since $p = F(\xi_p)$,

\[
p \approx F(\hat{\xi}_p, n)
\]
\[
\approx F(\xi_p) + f(\xi_p)(\hat{\xi}_p, n - \xi_p)
\]
\[
\approx \hat{F}_n(\xi_p) + f(\xi_p)(\hat{\xi}_p, n - \xi_p).
\]

Thus,

\[
\hat{\xi}_p, n \approx \xi_p - \frac{\hat{F}_n(\xi_p) - p}{f(\xi_p)}.
\]
Bahadur Representation for CMC

- **Recall:**
 \[\hat{\xi}_{p,n} \approx \xi_p - \frac{\hat{F}_n(\xi_p) - p}{f(\xi_p)}. \]

- Can make this rigorous for CMC
 - Let \(p_n = p + O(n^{-1/2}) \) and \(\hat{\xi}_{p_n,n} = \hat{F}_n^{-1}(p_n) \)
 - Write
 \[\hat{\xi}_{p_n,n} = \xi_p - \frac{\hat{F}_n(\xi_p) - p_n}{f(\xi_p)} + R_n \]

- Bahadur (1966): If \(f(\xi_p) > 0 \) and \(f'(\xi_p) \) exists,
 \[R_n = O(n^{-3/4}(\log n)^{1/2}(\log \log n)^{1/4}) \text{ a.s.} \]

- Ghosh (1971): If \(f(\xi_p) > 0 \),
 \[\sqrt{n}R_n \Rightarrow 0. \]
Assumptions for VRTs

- Let \hat{F}_n be estimated CDF using VRT.

Assumptions

A1. $P\{\hat{F}_n(x) \text{ is monotonically increasing in } x\} \to 1$ as $n \to \infty$.

A2. For every $a_n = O(n^{-1/2})$,

$$\sqrt{n} \left[(F(\xi_p + a_n) - F(\xi_p)) - (\hat{F}_n(\xi_p + a_n) - \hat{F}_n(\xi_p)) \right] \Rightarrow 0, \text{ as } n \to \infty.$$

A3. $\sqrt{n} \left[\hat{F}_n(\xi_p) - F(\xi_p) \right] \Rightarrow N(0, \psi_p^2)$ as $n \to \infty$ for some $0 < \psi_p < \infty$.

- A1–A3 hold (under certain moment conditions) for
 - Combined importance sampling and stratified sampling (IS+SS)
 - Antithetic variates
 - Control variates
Example: Importance Sampling (IS), Glynn (1996)

- F_* is another CDF such that F is absolutely cont. wrt F_*.
- $L(u) = dF(u)/dF_*(u)$ is likelihood ratio.
- E_* is expectation under F_*, so
 \[
 F(x) = \int I(u \leq x) \, dF(u) \\
 = \int I(u \leq x) \, L(u) \, dF_*(u) = E_*[I(X \leq x) \, L].
 \]

- IS: generate $X_1, L_1, \ldots, X_n, L_n$ i.i.d. using F_*.
- IS estimator of CDF is
 \[
 \hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x) \, L_i
 \]

- IS estimator of p-quantile is $\hat{\xi}_{p,n} = \hat{F}_n^{-1}(p)$.
- A1–A3 hold if $E_*[I(X \leq \xi_p + \delta) \, L^{2+\epsilon}] < \infty$ for some $\epsilon, \delta > 0$.

Chu, Nakayama (NJIT)
Confidence Intervals for Quantiles
RESIM 2010 9 / 16
Bahadur-Ghosh Representation for VRTs

Theorem

- Suppose \(f(\xi_p) > 0 \) and VRT CDF estimator \(\hat{F}_n \) satisfies A1–A3.
- Then \(\hat{\xi}_{p_n,n} = \hat{F}_n^{-1}(p_n) \) with \(p_n = p + O(n^{-1/2}) \) satisfies

\[
\hat{\xi}_{p_n,n} = \xi_p - \frac{\hat{F}_n(\xi_p) - p_n}{f(\xi_p)} + R_n,
\]

where

\[
\sqrt{nR_n} \Rightarrow 0.
\]

- Sun and Hong (2010) prove a.s. Bahadur representation for IS
 - Stronger assumptions
 - For fixed \(p_n \equiv p \).
Corollary

VRT quantile estimator $\hat{\xi}_{p,n} = \hat{F}_n^{-1}(p)$ satisfies CLT:

$$\sqrt{n}(\hat{\xi}_{p,n} - \xi_p) \Rightarrow N(0, \kappa_p^2)$$

where

$$\kappa_p = \frac{\psi_p}{f(\xi_p)}$$

and ψ_p^2 is variance constant in CLT for $\hat{F}_n(\xi_p)$.

- To construct CI, want consistent estimators for ψ_p and $f(\xi_p)$
 - Straightforward to construct consistent estimate of ψ_p.
Estimating $f(\xi_p)$

- Recall: CLT variance κ_p^2, where $\kappa_p = \frac{\psi_p}{f(\xi_p)}$
- Glynn (1996): “Major challenge” is estimating $f(\xi_p)$.
- Glasserman et al. (2000): Estimating $f(\xi_p)$ is “difficult”.
- We develop consistent estimate of $\phi_p \equiv 1/f(\xi_p)$.
 - Chain rule of calculus:
 $$\frac{d}{dp} F^{-1}(p) = \frac{1}{f(\xi_p)} = \phi_p.$$
 - Finite difference: for any $c \neq 0$ (“smoothing parameter”),
 $$\hat{\phi}_{p,n}(c) = \frac{\hat{F}_n^{-1}(p + cn^{-1/2}) - \hat{F}_n^{-1}(p - cn^{-1/2})}{2cn^{-1/2}}$$
 - Bloch-Gastwirth (1968) prove $\tilde{\phi}_{p,n}(c)$ is consistent for CMC
 - Proof uses $X_i = F^{-1}(U_i)$, where $U_i \sim \text{unif}[0, 1]$
 - Proof does not generalize to VRT.
\(\hat{\phi}_{p,n}(c) \) is consistent estimator for \(\phi_p = 1/f(\xi_p) \)

Corollary

\(\hat{\phi}_{p,n}(c) \Rightarrow \phi_p \) as \(n \to \infty \) for any \(c \neq 0 \).

Proof.

1. By Bahadur-Ghosh representation,

\[
\hat{F}_n^{-1}(p \pm cn^{-1/2}) = \xi_p - \frac{\hat{F}_n(p) - (p \pm cn^{-1/2})}{f(\xi_p)} + R_n,\pm
\]

2. Since \(\sqrt{n}R_{n,\pm} \Rightarrow 0 \),

\[
\hat{\phi}_{p,n}(c) = \frac{\hat{F}_n^{-1}(p + cn^{-1/2}) - \hat{F}_n^{-1}(p - cn^{-1/2})}{2cn^{-1/2}}
\]

\[
= \frac{1}{f(\xi_p)} + \frac{\sqrt{n}}{2c}(R_{n,+} - R_{n,-}) \Rightarrow \frac{1}{f(\xi_p)}
\]
Stochastic Activity Network (SAN)

- Activity durations are i.i.d. exponential with mean 1.
- Estimate 0.95-quantile of longest path from s to t.
- IS+SS
 - IS: Mixture of expo-tilted distns [Juneja et al. (2006)]
 - IS: Choose tilting parameters as in Glynn (1996).
 - SS: Path with largest mean is stratification variable.
Empirical Results

Stochastic Activity Network (SAN)

Nominal 90% CIs
Estimated coverage from 10^4 replications
c is smoothing parameter in finite difference.
Concluding Remarks

- Developed general framework to construct asymptotically valid confidence intervals for quantile with VRT
 - IS+SS
 - Antithetic variates
 - Control variates
- Approach based on Bahadur-Ghosh representation for quantile estimator with VRT.