Stochastic methods in palaeoclimates

Michel Crucifix, with thanks to Bernard De Saedeleer and Jonty Rougier

Workshop on ‘Stochastic Methods in Climate Modelling, Isaac Newton Institute, Cambridge, 24th August 2010
This work is part of a project funded by the European Research Council:

Integrating Theory and Observations of the Pleistocene.

This project, along other Belgian grants, supports a team of five scientists:

Michel Crucifix (manager)

Bernard De Saedeleer (dynamical systems, stability analysis, synchronisation)

David Garcia-Alvarez (stochastic dynamical systems, calibration on summary statistics)

Guillaume Lenoir (wavelets, bifurcation analysis)

Nabila Bounceur (experiment plans with numerical simulators, emulators)

emails: firstname.name@uclouvain.be

Introduction:

- Why a mathematical theory of palaeoclimates
- Stochastic differential equations
 - deterministic paradigms
 - the stochastic resonance
 - relaxation oscillators
- Stochastic methods for model selection and calibration
Greenland $\delta^{18}O$

δ^{18}-O Benthic Stack (roughly ice volume)

Antarctic Dome C δD

Time (thousand years)

Sources: NGRIP, 2004; Lisiecki and Raymo, 2005, EPICA, 2006. All available on NOAA database.
“Understanding palaeoclimates”

- **Phenomenological**
 - connexion between different components of climate system
 - ‘leads and lags’
 - confrontation of climate records

- **Connexion with the laws of physics (e.g.: fluid dynamics)**
 - use of simulators

- **Dynamical understanding**
 - ‘climate attractors’
 - bifurcation analysis
Astronomical forcing

- obliquity, precession, eccentricity
- changes in distribution of incoming solar radiation
- definite drive on ice mass balance, possibly (many) other means of actions (climate astronomical sensors)
the myth of the ‘sharp spectral peaks’
Insolation contains a rich spectrum

Spectrum Incoming Solar Radiation at Summer Solstice at 65° N

- **Obliquity terms**
- **Precession terms**

“20-ka”

“40-ka”

Amplitude (W/m²) vs. Angular velocity (degree per thousand years)

Source: A. L. Berger, Long-term variations of daily insolation and Quaternary climatic changes, J. Atmos. Sci., 35, 2362–2367 1978

Tuesday 24 August 2010
Benthic record ODP 1143 and its continuous wavelet transform

delta 18-O

Depth (m)

Period

50
100
150

10

2.0
2.5
3.0
3.5
4.0
4.5

0.1
0.2
0.3
0.4

Tuesday 24 August 2010
Which stochastic methods?

- Parameterisation of uncertainties
 - (a parameter may be constant but stochastic)
- Parameterisation of unresolved processes
 - e.g. : Gaussian noise
- Generation of chronologies

Where is theory needed?

- Dynamical understanding of Stochastic Climate models
- Calibration of uncertain parameters and model selection
Introduction:

- Why a mathematical theory of palaeoclimates

Stochastic differential equations

- deterministic paradigms
- the stochastic resonance
- relaxation oscillators

Stochastic methods for model selection and calibration
Deterministic paradigm: climate driven by an effective potential function

- **1-d model**

\[dX = - \frac{d\phi(X, F')}{dX} dt \]

trivial example: \[\phi(x, t) = \alpha X^2 + F(t)X \]

\[dX = -(2\alpha X + F')dt \]

linear response model
Feedbacks \rightarrow 2-state models

$$\phi = -\frac{X^4}{4} + X^2 - FX$$

see : recently, P. Ditlevsen, Paleoceanography (2009)
Justification of the 2-state paradigm

- At least one ice-sheet / climate simulator was found to roughly obey this simple equation (LLN - 2 D model)
- Many components of the Earth system may be driven by an equation of this kind
 - Atlantic ocean deep circulation (Stommel [1960])
 - Vegetation models (e.g.: Brovkin et al. [2003])
reproduce the LLN–2D simulator with a 2–state model

fit with the 1-D model: M. Crucifix, manuscript in revision for ‘The Holocene’

Tuesday 24 August 2010
Deterministic paradigm #2: interaction between component with different time-scales

\[
\frac{dX}{dt} = \frac{1}{\tau_x} f(X, Y, F(t)) \\
\frac{dY}{dt} = \frac{1}{\tau_y} g(X, Y, F(t)), \text{ with } \tau_y \ll \tau_x
\]
A much-studied mathematical object

Liénard form:

\[f = -Y \]
\[g = -\left(\phi'(Y) - X\right) \]

Van–der–Pol Bonhoeffer form:

\[f = -(Y + \beta \ (F(t))) \]
\[g = -\left(\phi'(Y) - X\right), \quad \phi'(Y) = \frac{Y^3}{3} - Y \]

‘Self-sustained’ oscillations

Excitable system for ‘beta’ at the fringe of the Hopf bifurcation

Synchronisation (phase-locking) on F
Fitting an astronomically driven vdp-oscillator to palaeoclimate data is easy.
The hidden state model as a surrogate for the slow–fast system

\[
\frac{1}{\tau_x} \frac{dX}{dt} = f^g(X, Y, F(t))
\]

\[g = \text{a discrete process}\]

\[g = 0 \quad \text{during the ice build up process}\]

\[g = 1 \quad \text{during deglaciation}\]

see Guckenheimer et al. (2003), SIAM, 2, 1–35 (Jump oscillator)
see recent works by Peavoy and Franzke in C. Past. Discussion for hidden-state model in the context of a palaeoclimate model-selection problem

Possibility of more time scales interacting (e.g.: turbulence involves infinite time scales)

\[
\frac{1}{\tau_x} \frac{dX}{dt} = f(X, Y, Z, \ldots, F(t)) \\
\frac{1}{\tau_y} \frac{dY}{dt} = g(X, Y, Z, \ldots, F(t)) \\
\frac{1}{\tau_z} \frac{dZ}{dt} = h(X, Y, Z, \ldots, F(t)) \\
\ldots
\]

- separation of time scales = average out z
- stochastic parameterisation = represent z as a stochastic process
Introduction:

- Why a mathematical theory of palaeoclimates

Stochastic differential equations

- deterministic paradigms

 the stochastic resonance

- relaxation oscillators

Stochastic methods for model selection and calibration
Langevin equation with 2–well potential

\[dX = -\frac{d\phi(X, F)}{dX} dt + \sigma^{1/2} d\omega \]

\[\phi = -\frac{X^4}{4} + X^2 - FX \]

- Suppose F periodic, but with weak amplitude
- Carefully chosen noise amplitude will with catalyse jumps between the two potential wells
- \rightarrow strong periodic component in the system response
Fig. 7. Peaks of power spectra of numerical solutions versus ϵ.
Introduction:

- Why a mathematical theory of palaeoclimates

Stochastic differential equations

- deterministic paradigms
- the stochastic resonance
- relaxation oscillators

Stochastic methods for model selection and calibration
Effect of stochastic perturbation on astronomically-driven vdp: two sample paths
so what happened?
Let’s go back to the deterministic system

work to be submitted:
B. De Saedeleer, M. Crucifix and S. Wieczorek
Autonomous oscillator: neutral with respect to the phase ($\lambda \text{ max} = 0$)

Different initial conditions
Driven oscillator: converge to ‘attracting phases’ (λ max < 0)
with astronomical forcing: three ‘clusters’ (depends on parameters)
One may define the ‘pullback attractor’ and the ‘basin of attraction’
Periodic forcing (here: 2:1 locking) pullback attractor

Astronomical forcing

Effect of stochastic perturbation on astronomically-driven vdp: two sample paths

transitions between two pullback attractors
Partial summary

- **1-D systems, with 2-well potentials:**
 - noise may induce stochastic resonance: amplifies an external forcing (but amplitude needs to be right)
 - Well known and documented result

- **2-D Oscillators**
 - noise creates a probability of transition between different ‘pullback’ attractors
 - probability depends on noise amplitude, forcing and dynamics
 - ... problem to be further explored.
Introduction:

- Why a mathematical theory of palaeoclimates

Stochastic differential equations

- deterministic paradigms
- the stochastic resonance
- relaxation oscillators

Stochastic methods for model selection and calibration
Reducing uncertainties and select models

OUR PROBLEMS

- Explore climate’s structural behaviour
 - shape of potential functions
 - existence of links between different components
- Estimate past climate state
- Estimate age of palaeoclimate records
motivating example: does climatic precession drive CO2?

Ruddiman (2003)

Tilt

Precession

Forcing

Feedback

\[\text{ICE} \]

\[\text{CO}_2 \]

\[\text{CH}_4 \]

\(~ 6500 \text{ yrs}~\)

\(~ 4500 \text{ yrs}~\)

\[\text{CH}_4 \] \[\text{CO}_2 \]

Model seen as a ‘data generating process’

Simulators (e.g. : GCM) → “Model” → Observations

“Model” → Physical arguments

“Model” → Phenomenological arguments
In this approach the model is not immediately inferred from observations (this is a myth: there are always underlying hypotheses), but it may be refined by a process of model selection.
As much as possible: find an embedded model framework

\[\tau_x dX = - (cY + \beta + \alpha F(t)) dt + \sigma d\omega \]
\[\tau_x dY = - (\phi(Y; \theta) - X) dt \]

e.g.:

if \(c = 0 \): linear Langevin model
if \(\alpha = 0 \): no forcing
etc.
... three years of ruminations

- **Metropolis - Hastings methods**
 - application to palaeoclimate by Hargreaves and Annan [2002] for deterministic case
 - remember: stochastic cause probabilistic phase-slips
 - need refinements. Proposal by Andrieux et al. [2010].

- **Particle filter for parameter and state estimation (Liu and West, 2001)**
 - (implementation on an R package that we called APF1step)
 - Bayesian framework
One application (red = stochastic)

\[\tau_x dX = (-Y + \beta + \alpha F(t))dt + \sigma d\omega \]
\[\tau_y dY = -(\phi(Y) - X)dt \]

\[\tau_x \sim 10 \text{kyr} \cdot \ln N(0, 1) \]
\[\tau_y \sim 10 \text{kyr} \cdot \ln N(0, 1) \]
\[c, \beta \sim \mathcal{N}(0, 1) \]
Filter: castastrophe at ‘terminations’

weather model

d18O LR04

beta

LnCt

time (kyr)

Tuesday 24 August 2010
Filtered parameters no longer give rise to oscillating behaviour
... three years of ruminations

- **Metropolis - Hastings methods**
 - application to palaeoclimate by Hargreaves and Annan [2002] for deterministic case
 - remember: stochastic cause probabilistic phase-slips
 - need refinements. Proposal by Andrieux et al. [2009].

- **Particle filter for parameter and state estimation**
 - (implementation on an R package that we called APF1step)
 - Bayesian framework
 - proved inefficient for slow-fast systems

- **Consider summary statistics**
 - implementation: Approximate Bayesian Computation
Inferences about a ‘data generating process’

- Observations
- Simulators (e.g.: GCM)
- “Model”
- Physical arguments
- Phenomenological arguments
- Summary statistic

The ideal summary statistic:

- concentrates on what you want to learn
- insensitive or little sensitive to nuisance parameters

If you want to learn about the dynamics

- try to build summary statistic not too sensitive to time-scale errors

... and vice versa: if you want to learn about the time-scale ...

- running project: wavelet-based summary statistic (PhD student: Guillaume Lenoir)
Summary

- **Why a mathematical theory today?**
 - still lack of dynamical understanding
 - connexion with statistics to rationalise model selection

- **Stochastic parameterisations**
 - represent ‘fast modes’
 - in oscillators: catalyse phase slips: unpredictability
 - great scope for sophistication: e.g.: multiplicative noise

- **Methods for model selection and calibration**
 - Filtering approaches as they are unsuitable for slow–fast systems
 - Importance of finding appropriate summary statistics