Derivation of a Local Form of the Maximum Entropy Production Principle

Mathematical and Statistical Approaches to Climate Modelling and Prediction,
Isaac Newton Institute for Mathematical Sciences
22 November 2010

by Robert K. Niven

School of Engineering and Information Technology
The University of New South Wales at ADFA
Canberra, ACT, Australia.
r.niven@adfa.edu.au
Advertisement

Will be co-host (with Roddy Dewar) of a “maximum entropy methods workshop”, Canberra, Australia, in Sept. 2011

Meeting on maximum entropy and entropy production-related themes:
- theory
- planetary system dynamics (atmosphere, oceans, mantle, biosphere, etc)
- fluid turbulence + convective heat transfer systems
- cosmology / astrophysics / astrobiology
- biological / ecological systems
- solid mechanics (elastic / plastic / viscous deformation + failure)
Contents

1. Concepts
 - analysis of probabilistic systems: Jaynes’ MaxEnt; Boltzmann’s MaxProb
 - types of systems
 - the maximum entropy production (MaxEP) principle

2. Operation of MaxEnt
 - MaxEnt algorithm + implications
 - equilibrium systems → equilibrium position
 - role of Planck potential (= free energy / temperature)

3. Analysis of local steady-state system
 - apply MaxEnt → steady-state position
 - role of potential ϕ_{st}

4. Analysis of global steady-state system (Dewar)
 - discussion + critique
Concepts
Analysis of Probabilistic Systems

Consider any system of discrete entities
e.g. atoms / molecules / ions, quantum particles,
biological organisms, transportation units,
economic agents, social actors, humans

- maximise entropy of a system, subject to constraints
→ inferred (“least informative”) description of system

Boltzmann (1877), Planck (1901) MaxProb principle:
- maximise entropy of a system, subject to constraints → most
 probable position of system
→ general principle of inference (any probabilistic system)
“Measures of Central Tendency”

Continuous $x \in \mathbb{R}$

$P(x) = \text{probability density function (pdf)}$

Discrete $m \in \mathbb{Z}$

$P_m = \text{probability distribution}$

$W_m = \text{statistical weight (frequency)}$
Definitions

Relative entropy of αth type of system:

$$S_j^{\alpha} = -\sum_{i=1}^{s} p_i^{\alpha} \ln \frac{p_i^{\alpha}}{q_i^{\alpha}}$$

(will assume this entropy function applies)

where p_i^{α} = probability of ith state or category
q_i^{α} = prior (source) probability of ith category, in absence of any constraints (e.g. degeneracy)
s = number of categories

Constraints:

$$\sum_{i=1}^{s} p_i^{\alpha} = 1$$

(normalisation constraint)

$$\sum_{i=1}^{s} p_i^{\alpha} f_{ri}^{\alpha} = \langle f_r^{\alpha} \rangle, \quad r = 1, \ldots, R$$

(moment constraints)

where f_{ri}^{α} = value of ith category of rth constraint
$$\langle f_r^{\alpha} \rangle$$ = expectation value of rth constraint
e.g. 1: Thermodynamic Systems

\[p_i = \text{joint prob. that entity has particular contents } f_{ri} \]

\[\text{e.g. energy level, volume level, nos. of particles} \]

Constraints = *mean contents* of system \(\langle f_r \rangle \)

(a) **Isolated system**
- fixed contents
- entities = molecules
 (microcanonical ensemble)

(b) **Open (diffusive) system**
- system surrounded by bath
- entities = entire systems
 (canonical, grand canonical ensembles)

Apply MaxEnt \(\rightarrow \) *equilibrium position* of system
e.g. 2: Steady-State Flow Systems

(a) **Global** (Dewar, 2003, 2005)
Analyse entire control volume
\[p_i = \text{joint prob. that system has instantaneous fluxes } j_{ri}(x) \text{ around boundary} \]
Constraints = *mean boundary fluxes* \(\langle j_r \rangle(x) \)
e.g. heat, momentum, nos. of particles

(b) **Local** (Niven, 2009, 2010)
Analyse local infinitesimal element
\[p_i = \text{joint prob. of instantaneous fluxes } j_{ri} \text{ through element} \]
Constraints = *mean fluxes* \(\langle j_r \rangle \text{ through element} \)

Apply MaxEnt (different entropy) \(\rightarrow \) *steady-state position of system*
MaxEnt / MaxProb for Systems Analysis

Contention:
MaxEnt / MaxProb method \rightarrow dramatic simplifications to systems analysis
- thermodynamic context \Rightarrow generic context
- old + new phenomena
- model closure (?)

Caveats:
- probabilistic, not deterministic (this is inference !)
- discard all unnecessary information (e.g. details of dynamics)
Maximum Entropy Production (MaxEP) Principle

“A dynamic flow-controlled system seeks a steady state at which there is a maximum rate of production of thermodynamic entropy”

e.g. earth climate system
Application of MaxEP

Earth Climate System
Paltridge (1975, 1978):
- 10-box (latitudinal) model of atmosphere-ocean system
- atmosphere, oceanic + overall energy balances → many solutions
- choose heat fluxes which maximise entropy production:

![Diagram](image)
Application of MaxEP

Can also apply to:
- convective heat transfer systems (Rayleigh-Bénard cell)
- turbulent fluid flow systems
- biological (chemically degrading) systems

So where does MaxEP come from?

Note: MaxEP is fundamentally different to Prigogine’s MinEP principle:
- MaxEP: choice of observed steady state from set of possible steady states
- Prigogine MinEP: selection of steady state from set of non-steady state solutions (trivial)
Operation of Jaynes’ MaxEnt
Consider a type of probabilistic system (of any kind):

Maximise \(\mathcal{S}_\alpha = -\sum_{i=1}^{s} p_i^\alpha \ln \frac{p_i^\alpha}{q_i^\alpha} \) relative entropy

subject to \(\sum_{i=1}^{s} p_i^\alpha = 1 \) normalisation constraint

\(\sum_{i=1}^{s} p_i^\alpha f_r = \langle f_r^\alpha \rangle, \quad r = 1, \ldots, R \) moment constraints

Write Lagrangian, extremise \(p_i^\alpha \rightarrow \) most probable realisation:

\(p_i^{\alpha^*} = \frac{1}{Z^\alpha} q_i^\alpha e^{\sum_{r=1}^{R} \lambda_r^\alpha f_r^\alpha} \) Boltzmann distribution

where \(\lambda_r^\alpha = \) Lagrangian multipliers

\(Z^\alpha = \sum_{i=1}^{s} q_i^\alpha e^{\sum_{r=1}^{R} \lambda_r^\alpha f_r^\alpha} = \) partition function

\(\lambda_0^\alpha = \ln Z^\alpha = \) Massieu function
Jaynes’ Relations

Maximum entropy:
\[\mathcal{H}_\alpha^* = \ln Z^\alpha + \sum_{r=1}^{R} \lambda_r^\alpha \langle f_r^\alpha \rangle \]

Minimum potential:
\[\phi^\alpha = -\ln Z^\alpha = -\mathcal{H}_\alpha^* + \sum_{r=1}^{R} \lambda_r^\alpha \langle f_r^\alpha \rangle \]

Derivatives:
\[\frac{\partial \mathcal{H}_\alpha^*}{\partial \langle f_r^\alpha \rangle} = \lambda_r^\alpha \]
\[\frac{\partial \phi^\alpha}{\partial \lambda_r^\alpha} = \langle f_r^\alpha \rangle \]
\[\frac{\partial^2 \mathcal{H}_\alpha^*}{\partial \langle f_m^\alpha \rangle \partial \langle f_r^\alpha \rangle} - \frac{\partial^2 \phi^\alpha}{\partial \lambda_m^\alpha \partial \lambda_r^\alpha} = g_{mr} \in \mathbf{g} \]
\[\frac{\partial \langle f_r^\alpha \rangle}{\partial \lambda_m^\alpha} = \frac{\partial \langle f_m^\alpha \rangle}{\partial \lambda_r^\alpha} \]
\[\frac{\partial \langle f_r^\alpha \rangle}{\partial \lambda_m^\alpha} = \frac{\partial \langle f_m^\alpha \rangle}{\partial \lambda_r^\alpha} \]
\[\frac{\partial^2 \phi^\alpha}{\partial \lambda_m^\alpha \partial \lambda_r^\alpha} = -\text{cov}(f_m^\alpha,f_r^\alpha) = \gamma_{mr} \in \gamma \]

Legendre transf.:
\[\gamma = g^{-1} \quad \text{for} \quad \phi^\alpha(\lambda_1^\alpha,\lambda_2^\alpha,...) \Leftrightarrow \mathcal{H}_\alpha^*(\langle f_1^\alpha \rangle,\langle f_2^\alpha \rangle,...) \]
Interpretation 1

Variation of constraint (Jaynes, 1957, 1963):

\[d\langle f_r^\alpha \rangle = d\left(\sum_{i=1}^{S} p_i^\alpha f_{ri}^\alpha\right) = \sum_{i=1}^{S} p_i^\alpha df_{ri}^\alpha + \sum_{i=1}^{S} dp_i^\alpha f_{ri}^\alpha \]

\[\delta W_r^\alpha = \text{gen. work} \quad \delta Q_r^\alpha = \text{gen. heat} \]

Generic Clausius equality

\[d\phi^\alpha = \sum_{r=1}^{R} \lambda_r^\alpha \delta Q_r^\alpha \]

Generic potential

\[d\phi^\alpha = \sum_{r=1}^{R} \lambda_r^\alpha \delta W_r^\alpha + \sum_{r=1}^{R} d\lambda_r^\alpha \langle f_r^\alpha \rangle \]

If constant multipliers \{\lambda_r^\alpha\}, \phi^\alpha = \text{weighted generalised } \alpha\text{th type of work}

Minimum \phi^\alpha \rightarrow \text{position of minimum available } \alpha\text{th type of work}
Interpretation 2

Most systems: **must** consider changes in entropy within + outside system:

\[d\mathcal{S}_\text{univ}^\alpha = d\mathcal{S}_\alpha^* + d\mathcal{S}_\text{ext}^\alpha \geq 0 \]

Generic second law

But any external change \(\leftrightarrow\) changes in constraints and/or multipliers

\[d\mathcal{S}_\text{ext}^\alpha = -d \sum_{r=1}^{R} \lambda_r^\alpha \langle f_r^\alpha \rangle = \frac{d\sigma^\alpha}{\kappa} \]

Generic entropy production

\[\therefore \quad d\phi^\alpha = -d\mathcal{S}_\alpha^* + d \sum_{r=1}^{R} \lambda_r^\alpha \langle f_r^\alpha \rangle = -d\mathcal{S}_\text{univ}^\alpha = -d\mathcal{S}_\alpha^* - \frac{d\sigma^\alpha}{\kappa} \leq 0 \]

\[\therefore \quad \phi^\alpha = \text{generic, dimensionless, free energy concept} ! \]

Minimum \(\phi^\alpha \rightarrow\) position of maximum \(\alpha\)th entropy of universe

If constraints can vary, **must** minimise \(\phi^\alpha\), **not** maximise \(\mathcal{S}_\alpha^*\)
Thermodynamic System

e.g. \[\sum_{i=1}^{s} p_i = 1 \] natural constraint

\[\sum_{i=1}^{s} p_i h_i = \langle H \rangle \] mean enthalpy

Apply MaxEnt (identify \(\lambda_H = 1/kT \) at const. \(P \))

\[p_i^* = \frac{1}{Z} e^{-\lambda_H h_i} = \frac{1}{Z} e^{-h_i/kT} \]

\[S^* = k \ln Z + \frac{\langle H \rangle}{T} \]

\[k \ d\phi_{eq} = d \left(\frac{G}{T} \right) = -dS^* + d \frac{\langle H \rangle}{T} \leq 0 \]

Min \(\phi_{eq} \) \(\rightarrow \) interplay between internal & external changes in entropy:

<table>
<thead>
<tr>
<th>Max (S^*)</th>
<th>Max (\sigma_{eq})</th>
<th>Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max (S^*)</td>
<td>Min (\sigma_{eq})</td>
<td>Driven by (\Delta S^* \geq</td>
</tr>
<tr>
<td>Min (S^*)</td>
<td>Max (\sigma_{eq})</td>
<td>Driven by (\Delta \sigma_{eq} \geq</td>
</tr>
</tbody>
</table>

\(i=s \)

\(i=3 \) Energy level

\(i=2 \)

\(i=1 \) Particle

= \(-d\sigma_{eq} = \) \(-\) increment of entropy produced
Other Ensembles

<table>
<thead>
<tr>
<th>Quantity Constraints</th>
<th>Multipliers</th>
<th>Potential $k\phi_{eq}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural, $\langle U \rangle$</td>
<td>λ_U</td>
<td>$F = -k\ln Z_1 = -S^* + \frac{\langle U \rangle}{T}$</td>
</tr>
<tr>
<td>Natural, $\langle H \rangle$</td>
<td>λ_H</td>
<td>$G = -k\ln Z_2 = -S^* + \frac{\langle H \rangle}{T}$</td>
</tr>
<tr>
<td>Natural, $\langle H \rangle, {\langle N_c \rangle}$</td>
<td>$\lambda_H, {\lambda_c}$</td>
<td>$J = -k\ln Z_3 = -S^* + \frac{\langle H \rangle}{T} - \sum_{c=1}^{C} \frac{\mu_c \langle N_c \rangle}{T}$</td>
</tr>
<tr>
<td>Natural, $\langle u \rangle, \langle \bar{e} \rangle$ (per unit mass quantities)</td>
<td>$\lambda_U, \lambda_{\bar{e}}$</td>
<td>$\gamma = -k\ln Z_4 = -s^* + \frac{\langle u \rangle}{T} + \frac{\bar{\pi} : \langle \bar{e} \rangle}{\rho T}$</td>
</tr>
</tbody>
</table>

Identify
$\lambda_U = \left. \frac{1}{kT} \right|_V$, $\lambda_H = \left. \frac{1}{kT} \right|_P$, $\lambda_c = -\frac{\mu_c}{kT}$, $\lambda_{\bar{e}} = -\frac{\bar{\pi}}{k\rho T}$

F = Helmholtz free energy, G = Gibbs free energy
J, γ given by Gibbs (1875-78) (modified $J \rightarrow$ exergy concept)
Summary

• Jaynes’ MaxEnt
 → all of existing equilibrium thermodynamics
 → new ensembles

• Minimum ϕ_{eq} → infer equilibrium position
 - Massieu (1869), Planck (1932):
 - minimise $k\phi_{eq}$ → “Planck potential” in entropy units
 - Gibbs (1875-1878):
 - assume T constant
 - minimise $kT\phi_{eq}$ → potential expressed in energy units
Analysis of Local Steady-State Flow
Local Analysis

1. Discretise control volume
 → consider infinitesimal (or small) boundary element, with mean local fluxes:
 \[\langle j_Q \rangle = \text{mean heat flux vector} \]
 \[\langle j_c \rangle = \text{mean particle flux vector, species } c \]
 \[\langle \tau \rangle = \text{mean momentum flux tensor} \]
 \[= \text{mean viscous stress tensor } \langle \tau \rangle - \langle P \rangle \delta \]
 (will omit chemical reactions here)

2. Adopt “local equilibrium” assumption
 → local \(T, P, \{ \mu_c \}, \rho, \text{etc}, \) within volume elements on either side of boundary
Control Volume Analysis
(de Groot & Mazur, 1984; Bird et al. 2006)

Entropy production across boundary element is:

\[
\hat{\sigma} = \langle \mathbf{j}_Q \rangle \cdot \nabla \left(\frac{1}{T} \right) - \sum_c \langle \mathbf{j}_c \rangle \cdot \nabla \left(\frac{\mu_c}{M_c T} - \frac{\mathbf{g}_c}{T} \right) - \langle \vec{\tau} \rangle : \nabla \left(\frac{\mathbf{v}}{T} \right)^\top
\]

- heat diffusion
- chemical + field diffusion
- momentum diffusion

where \(M_c \) = molar mass of \(c \) \(\mathbf{g}_c \) = body force vector on \(c \) \(\mathbf{v} \) = fluid velocity

Problem: in dissipative systems, \(\hat{\sigma} \) is indeterminate
(entropy not conserved; require knowledge of fluxes AND gradients)
MaxEnt Analysis
(Niven, PRE 80(2) (2009) 021113; Phil Trans B 365: (2010) 1323-1331)

Consider infinitesimal boundary element with
- mean fluxes / rates $\langle j_Q \rangle, \langle j_c \rangle, \langle \bar{\tau} \rangle$
- instantaneous fluxes / rates $j_{Q,I}, \{j_{Nc}\}, \bar{\tau}_J$

Maximise flux entropy $\mathcal{H}_{st} \rightarrow$ most probable steady-state description of element:

$$p_i^* = \frac{1}{Z} q_i \exp \left(-j_{Q,I} \cdot \zeta_Q - \sum_c j_{Nc} \cdot \zeta_c - \bar{\tau}_J : \zeta_\tau \right)$$

$$\mathcal{H}_{st}^* = \ln Z + \langle j_Q \rangle \cdot \zeta_Q + \sum_c \langle j_c \rangle \cdot \zeta_c + \langle \bar{\tau} \rangle : \zeta_\tau$$

where $\zeta_r = \text{Lagrangian multipliers}$

Since constraints are linearly independent, identify multipliers \propto gradients, hence

$$\mathcal{H}_{st}^* = \ln Z - \frac{\hat{\sigma}}{\mathcal{K}}$$

where $\mathcal{K} = \text{constant (units of J K}^{-1} \text{ m}^{-2} \text{ s}^{-1})$
Hence must minimise potential:

\[\phi_{st} = -\ln Z = -\mathcal{S}_{st}^* - \frac{\hat{\sigma}}{\mathcal{K}} \]

Again have interplay between changes of entropy (here the flux entropy \(\mathcal{S}_{st}^* \)) within and outside system:

<table>
<thead>
<tr>
<th>Max (\mathcal{S}_{st}^*)</th>
<th>Max (\hat{\sigma})</th>
<th>Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max (\mathcal{S}_{st}^*)</td>
<td>Min (\hat{\sigma})</td>
<td>Driven by (\Delta \mathcal{S}_{st}^* \geq \left</td>
</tr>
<tr>
<td>Min (\mathcal{S}_{st}^*)</td>
<td>Max (\hat{\sigma})</td>
<td>Driven by (\frac{\Delta \hat{\sigma}}{\mathcal{K}} \geq \left</td>
</tr>
</tbody>
</table>

Only two of these are consistent with a local MaxEP principle!
Conclude:

1. Can derive a local conditional MaxEP principle, based on MaxEnt
2. MaxEP is not universal - it is only one possibility!
 (c.f. minimum enthalpy principle in thermodynamics)

\[d\hat{\phi}_{st} = -d\xi^*_{st} - \frac{d\hat{\sigma}}{\mathcal{K}} \leq 0 \]

\[d\hat{\phi}_{eq} = d \frac{G}{kT} = -d\frac{S^*}{k} + d\frac{\langle H \rangle}{kT} \leq 0 \]
Analysis of
Global Steady-State Flow
Global Analysis

(Dewar, 2003, 2005)

Analyse entire control volume

Constraints = mean boundary fluxes $\langle j_r \rangle(x)$
 e.g. heat, momentum, nos. of particles

Derivation cast in terms of a path entropy

$$\tilde{S}_\Gamma = -\sum_{\Gamma} p_{\Gamma} \ln \frac{p_{\Gamma}}{q_{\Gamma}}$$

where p_{Γ} = joint prob. that system has particular fluxes at boundaries

Advantage

1. Analysis conducted at (global) scale of interest
 → omit details of local subsystems
Objections

1. (Language): Does not examine history-dependent effects
 ∴ Γ are not “paths”, but the global flux states of the system

2. (Reasoning): Have not yet “proven” global MaxEP
 - argument depends on a complicated double optimisation, which encounters difficulties
 - should in fact follow above Jaynes analysis *in entirety*
 → obtain potential function to be minimised

\[
 d\phi_\Gamma = -d\mathcal{H}^*_\Gamma - \frac{d\mathcal{S}_\Gamma}{\mathcal{K}} \leq 0
\]

→ again get interplay between (global) \(d\mathcal{H}^*_\Gamma\) and \(d\mathcal{S}_\Gamma\)
→ MaxEP important but not universal
3. (Scale): How does a system “know” that it is a system?
 - can we subdivide it?
 - can a system contain subsystems in which $\text{EP}<0$, compensated by others in which $\text{EP}>0$?
 - NO! - if so, could draw a boundary around EP<0 system, which would continuously violate 2nd law of thermodynamics
 - hence any MaxEP (or minimum ϕ_{st}) principle must apply at all scales (at which we can reasonably define macroscopic variables)
Unfinished Business

1. Possible to demonstrate (have not proven):

\[\dot{\sigma}_{\text{global}} = \sum_{\text{internal boundaries } \Omega} A_{\Omega} \dot{\sigma}_{\Omega} \]

provided one considers all local boundaries \(\Omega \) between sub-volumes (each at local equilibrium)

2. Need to prove (or disprove):

\[\text{Max } \dot{\sigma}_{\text{global}} = \sum_{\text{internal boundaries } \Omega} A_{\Omega} \text{Max } \dot{\sigma}_{\Omega} \]

where the local maxima are constrained by flows between internal elements

3. What does a mean mean?
 - how variable can the constraints \(\langle \mathbf{j}_r \rangle \) be?
 - in fact “steady state” is anything but steady!
Conclusions
Conclusions

1. Concepts
 - analysis of probabilistic systems: MaxEnt; MaxProb
 - the maximum entropy production (MaxEP) principle

2. Operation of MaxEnt
 - algorithm + implications → potential function ϕ
 - equilibrium systems → equilibrium position; Planck potential

3. Analysis of local steady-state system
 - apply MaxEnt → local steady-state position
 - minimum potential ϕ_{st} → conditional MaxEP principle

4. Analysis of global steady-state system (Dewar)
 - discussion + critique
 - need to consider potential ϕ_Γ

Further work to reconcile global + local analyses
Acknowledgments

I would like to thank:

- The Newton Institute, Cambridge, for this opportunity
- The University of New South Wales, Australia
- The European Commission, Bjarne Andresen + Flemming Topsøe for Marie Curie Incoming International Fellowship under FP6, 2007-2008
- Axel Kleidon of Max-Planck-Institut für Biogeochemie, Jena, for invitations + funding
- Discussions with Bjarne Andresen, Adrian Bejan, Gian-Paolo Beretta, Ariel Caticha, Peter Cox, Michel Crucifix, Matthias Cuntz, Robert Dewar, Rod Dewar, Graham Farquhar, Ali Ghaderi, Philip Goyal, Marian Grendar, Peter Harremöes, Per Hedegård, Tim Jupp, Kevin Knuth, Charley Lineweaver, Ralph Lorenz, Filip Meysman, Jan Naudts, Bernd Noack, Hisashi Ozawa, Garth Paltridge, Angelo Plastino, Arthur Ramer, Stephen Roberts, John Skilling, Hiroki Suyari, Flemming Topsøe, Sergio Verdu, Grzegorz Wilk + many others
Thank you!
Meaning of Flux Entropy?
(Niven, Phil Trans B 365: (2010) 1323-1331)

- distinct from thermodynamic entropy S^*
- expresses spread of p^*_i over instantaneous fluxes
- unlike equilibrium systems, have $i \in \mathbb{Z}$

For univariate flux levels i

Increasing \mathcal{H}^*_i \\

Hence $\mathcal{H}^*_i \uparrow \iff$ more fluctuating flow, with instantaneous flow reversals
(turbulent flow; ecological populations; economic systems)
Laws of Thermostatics
(Equilibrium system)

0th

\[\lambda_{r1} + \lambda_{r2} \rightarrow \lambda_{r} \]

1st

\[d\langle f_r \rangle = \delta W_r + \delta Q_r \]

2nd

\[dS^* = k \sum_{r=1}^{R} \lambda_r \delta Q_r \]
\[kd\phi_{eq} = d \frac{G}{T} = -dS^* + d \left(\frac{\langle U \rangle}{T} + \frac{P\langle V \rangle}{T} \right) \]

3rd

\[S^* = \ln Z + \sum_{r=1}^{R} \lambda_r \langle f_r \rangle \xrightarrow{p_1 \rightarrow 1} 0 \]

Laws of Thermodynamics
(Steady state system)

0th

\[\zeta_{r1} + \zeta_{r2} \rightarrow \zeta_{r} \]

1st

\[d\langle j_r \rangle = \delta w_r + \delta q_r \]

2nd

\[d\hat{S}_{st} = \sum_{r=1}^{R} \zeta_r \cdot \delta q_r \]
\[d\phi_{st} = -d\hat{S}_{st} - \frac{1}{K} d\hat{\delta} \]

3rd

\[\hat{S}_{st} = \ln Z + \sum_{r=1}^{R} \zeta_r \cdot \langle j_r \rangle \xrightarrow{p_0 \rightarrow 1} 0 \]
Expansion

Expand flux \(\langle j_{rij} \rangle \) for \(i, j \in \{x, y, z\} \) about \(\{\zeta_r = 0\} \):

\[
\langle j_{rij} \rangle = \sum_{mkl} \left. \frac{\partial \langle j_{ij} \rangle}{\partial \zeta_{mkl}} \right|_{\{\zeta_r = 0\}} \zeta_{mkl} + \frac{1}{2!} \sum_{mkl} \sum_{n\varphi\theta} \left. \frac{\partial^2 \langle j_{ij} \rangle}{\partial \zeta_{mkl} \partial \zeta_{n\varphi\theta}} \right|_{\{\zeta_r = 0\}} \zeta_{mkl} \zeta_{n\varphi\theta} + \ldots
\]

Onsager linear transport regime

But always have Jaynes reciprocal relation (local):

\[
\frac{\partial \langle j_{rij} \rangle}{\partial \zeta_{mkl}} = \frac{\partial \langle j_{mkl} \rangle}{\partial \zeta_{rij}}
\]

(near and far from equilibrium)
Generalised Riemannian Geometry

- Jaynes’ analysis

 \[\frac{\partial^2 \phi}{\partial \lambda_m \partial \lambda_r} = \gamma_{mr} \] as Riemannian metric on manifold of stationary positions

- arc length:

 \[L_\phi = \int_{0}^{\xi_{\text{max}}} \sqrt{\sum_{m,r=1}^{R} \gamma_{mr} \frac{\partial \lambda_m}{\partial \xi} \frac{\partial \lambda_r}{\partial \xi}} \, d\xi \]

- distance:

 \[J_\phi = \int_{0}^{\xi_{\text{max}}} \frac{1}{2} \sum_{m,r=1}^{R} \gamma_{mr} \frac{\partial \lambda_m}{\partial \xi} \frac{\partial \lambda_r}{\partial \xi} \, d\xi \]

Can show:

\[J_\phi \geq \frac{L_\phi^2}{2\xi_{\text{max}}} \]

Generalised “Least Action Bound”

→ minimum cost (in units of \(\phi \) = units of \(J_\phi \)) to move system from one stationary position to another, at specified rates
Applications

(a) **Equilibrium systems**
(Salamon, Andresen, Berry, Nulton *et al.*, 1980s-present)
- least action bound $\rightarrow \textit{min. entropy cost}$ of transition between equilibrium positions
- applied to cycle $\rightarrow \textit{min. entropy production principle}$

(b) **Flow systems**
(Niven & Andresen, 2009)
- least action bound $\rightarrow \textit{min. entropy production principle}$ for transition between steady states of a flow system