Application of the MaxEP Principle to Turbulent Fluid Mechanics + Planetary Systems

Mathematical and Statistical Approaches to Climate Modelling and Prediction,
Isaac Newton Institute for Mathematical Sciences
26 November 2010

by Robert K. Niven

School of Engineering and Information Technology
The University of New South Wales at ADFA
Canberra, ACT, Australia.
r.niven@adfa.edu.au
Advertisements

1. Co-editor (with Valerio Lucarini) of special issue of *Earth System Dynamics* on “Thermodynamics of the Earth system”

2. Will be co-host (with Roddy Dewar) of a “maximum entropy methods workshop”, Canberra, Australia, Sept. 2011

Meeting on maximum entropy and entropy production-related themes:
- theory
- planetary system dynamics (atmosphere, oceans, mantle, biosphere, etc)
- fluid turbulence + convective heat transfer systems
- cosmology / astrophysics / astrobiology
- biological / ecological systems
- solid mechanics (elastic / plastic / viscous deformation + failure)
Contents

1. Concepts
 - introduction to MaxEP
 - overview of Jaynes’ MaxEnt method
 - application to equilibrium systems → minimise Planck potential

2. Analyses of steady-state systems
 - apply MaxEnt → steady-state position (local, global)
 - role of potential ϕ_{st}

3. Turbulent flow in a pipe
 - role of MaxEP in single and parallel pipes

4. Exoplanets
 - application to “hot Jupiter” planets
Concepts
Maximum Entropy Production (MaxEP) Principle

“A dynamic flow-controlled system seeks a steady state at which there is a maximum rate of production of thermodynamic entropy”

e.g. earth climate system
Application of MaxEP

Earth Climate System
Paltrridge (1975, 1978):
- 10-box (latitudinal) model of atmosphere-ocean system
- atmosphere, oceanic + overall energy balances → many solutions
- choose heat fluxes which maximise entropy production:
Application of MaxEP

Benard cell

\[\dot{\sigma}_{sys} \]

\[\text{Ra} \]

Distance from equilibrium

\[\text{Total} \]

\[\text{Conduction Only} \]

Ecosystem

\[\dot{\sigma}_{sys} \]

Entropy production

Distance from equilibrium

Chemical oxidation (thermodynamic mode)

Bacterial growth (dissipative structure)

(Meysman, 2007)

\[\therefore \text{MaxEP = unifying principle for flow systems of all kinds} \]
Application of MaxEP

Where does MaxEP come from?
When can it be applied?
Analysis of Probabilistic Systems

Consider any system of discrete entities
e.g. atoms / molecules / ions, quantum particles,
biological organisms, transportation units,
economic agents, social actors, humans

- maximise entropy, subject to constraints
→ inferred (“least informative”) description of system

Boltzmann (1877), Planck (1901) MaxProb principle:
- maximise entropy, subject to constraints
→ most probable position of system
Jaynes’ MaxEnt

Consider a type of probabilistic system (of any kind):

Maximise

$$S_\alpha = -\sum_{i=1}^{S} p_i^\alpha \ln \frac{p_i^\alpha}{q_i^\alpha}$$

relative entropy

subject to

$$\sum_{i=1}^{S} p_i^\alpha = 1$$

normalisation constraint

$$\sum_{i=1}^{S} p_i^\alpha f_r^\alpha = \langle f_r^\alpha \rangle, \quad r = 1, \ldots, R$$

moment constraints

Write Lagrangian, extremise \rightarrow most probable realisation:

$$p_i^{\alpha*} = \frac{1}{Z^\alpha} q_i^\alpha e^{-\sum_{r=1}^{R} \lambda_r^{\alpha} f_r^\alpha}$$

Boltzmann distribution

where λ_r^{α} = Lagrangian multipliers

$$Z^\alpha = \sum_{i=1}^{S} q_i^\alpha e^{-\sum_{r=1}^{R} \lambda_r^{\alpha} f_r^\alpha} = \text{partition function}$$
Jaynes’ Relations

Maximum entropy:
\[S^*_{\alpha} = \ln Z^\alpha + \sum_{r=1}^{R} \lambda_r^{\alpha} \langle f_r^{\alpha} \rangle \]

Minimum potential:
\[\phi^{\alpha} = -\ln Z^\alpha = -S^*_{\alpha} + \sum_{r=1}^{R} \lambda_r^{\alpha} \langle f_r^{\alpha} \rangle \]

Derivatives:
\[\frac{\partial S^*_{\alpha}}{\partial \langle f_r^{\alpha} \rangle} = \lambda_r^{\alpha} \]
\[\frac{\partial \phi^{\alpha}}{\partial \lambda_r^{\alpha}} = \langle f_r^{\alpha} \rangle \]

Legendre transf.:
\[\gamma = g^{-1} \]
for \[\phi^{\alpha}(\lambda_1^{\alpha}, \lambda_2^{\alpha}, \ldots) \Leftrightarrow S^*_{\alpha}(\langle f_1^{\alpha} \rangle, \langle f_2^{\alpha} \rangle, \ldots) \]
Interpretation

Most systems: **must** consider changes in entropy within + outside system:

\[
d\mathcal{S}_\text{univ} = d\mathcal{S}_\alpha^* + d\mathcal{S}_\text{ext}^* \geq 0
\]

Generic second law

But any external change ⇔ changes in constraints and/or multipliers

\[
d\mathcal{S}_\text{ext}^\alpha = -d \sum_{r=1}^{R} \lambda_r \langle f_r^\alpha \rangle = \frac{d\sigma^\alpha}{\kappa}
\]

Generic entropy production

\[
\therefore \quad d\phi^\alpha = -d\mathcal{S}_\alpha^* + d \sum_{r=1}^{R} \lambda_r \langle f_r^\alpha \rangle = -d\mathcal{S}_\text{univ} = -d\mathcal{S}_\alpha^* - \frac{d\sigma^\alpha}{\kappa} \leq 0
\]

\[
\therefore \quad \phi^\alpha = \text{generic, dimensionless, free energy concept!}
\]

Minimum \(\phi^\alpha \) → position of maximum \(\alpha \)th entropy of universe

If constraints can vary, **must** minimise \(\phi^\alpha \), **not** maximise \(\mathcal{S}_\alpha^* \)
e.g.: Thermodynamic Systems

\[p_i = \text{joint prob. that entity has particular contents } f_{ri} \]

\[\text{e.g. energy level, volume level, nos. of particles} \]

Constraints = mean contents of system \(\langle f_r \rangle \)

(a) **Isolated system**
- fixed contents
- entities = molecules
 - (microcanonical ensemble)

(b) **Open (diffusive) system**
- system surrounded by bath
- entities = entire systems
 - (canonical, grand canonical ensembles)

Apply MaxEnt \(\rightarrow \) equilibrium position of system
Thermodynamic System

e.g. \[\sum_{i=1}^{s} p_i = 1 \] natural constraint
\[\sum_{i=1}^{s} p_i h_i = \langle H \rangle \] mean enthalpy

Apply MaxEnt (identify \(\lambda_H = 1/kT \) at const. \(P \))

\[p_i^* = \frac{1}{Z} e^{-\lambda_H h_i} = \frac{1}{Z} e^{-h_i/kT} \]

\[S^* = k \ln Z + \frac{\langle H \rangle}{T} \]

\[k \ d\phi_{eq} = d \left(\frac{G}{T} \right) = -dS^* + d\left(\frac{\langle H \rangle}{T} \right) \leq 0 \]

Min \(\phi_{eq} \rightarrow \) interplay between internal & external changes in entropy:

<table>
<thead>
<tr>
<th>Max (S^*)</th>
<th>Max (\sigma_{eq})</th>
<th>Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max (S^*)</td>
<td>Min (\sigma_{eq})</td>
<td>Driven by (\Delta S^* \geq</td>
</tr>
<tr>
<td>Min (S^*)</td>
<td>Max (\sigma_{eq})</td>
<td>Driven by (</td>
</tr>
</tbody>
</table>
Summary

- Jaynes’ MaxEnt
 → existing equilibrium thermodynamics

- Minimum ϕ_{eq} → infer equilibrium position
 - Massieu (1869), Planck (1932):
 - minimise $k\phi_{eq}$ → “Planck potential” in entropy units
 - Gibbs (1875-1878):
 - assume T constant
 - minimise $kT\phi_{eq}$ → “free energy” expressed in energy units
MaxEnt / MaxProb for Systems Analysis

Contention:
MaxEnt / MaxProb method → **dramatic** simplifications to systems analysis
- thermodynamic context ⇒ generic context
- old + new phenomena
- model closure (?)

Caveats:
- probabilistic, not deterministic (this is **inference** !)
- discard all unnecessary information (e.g. details of dynamics)
MaxEnt Analyses of Steady-State Flow
Steady-State Flow Systems

(a) **Global** (Dewar, 2003, 2005)
Analyse entire control volume
\[p_i = \text{joint prob. of instantaneous fluxes } j_{ri}(x) \]
around boundary
Constraints = *mean boundary fluxes* \(\langle j_r \rangle(x) \)
e.g. heat, momentum, nos. of particles

(b) **Local** (Niven, 2009, 2010)
Analyse local infinitesimal area element
\[p_i = \text{joint prob. of instantaneous fluxes } j_{ri} \]
through element
Constraints = *mean fluxes* \(\langle j_r \rangle \) through element
Apply MaxEnt (different entropy) \(\rightarrow \) *steady-state position* of system
MaxEnt Analysis (Local)
(Niven, PRE 80(2) (2009) 021113; Phil Trans B 365: (2010) 1323-1331)
Consider infinitesimal (or small) area element with
- mean fluxes / rates $\langle j_Q \rangle$, $\langle j_c \rangle$, $\langle \bar{\tau} \rangle$
- instantaneous fluxes / rates $j_{Q,I}$, $\{j_N_c\}$, $\bar{\tau}_J$
Maximise flux entropy S_{st}^* → most probable steady-state description of element:

\[
p_i^* = \frac{1}{Z} q_i \exp\left(-j_{Q,I} \cdot \zeta_Q - \sum_c j_{N_c} \cdot \zeta_c - \bar{\tau}_J : \zeta_{\tau} \right)
\]

\[
S_{st}^* = \ln Z + \langle j_Q \rangle \cdot \zeta_Q + \sum_c \langle j_c \rangle \cdot \zeta_c + \langle \bar{\tau} \rangle : \zeta_{\tau}
\]
where $\zeta_r = $ Lagrangian multipliers

Compare (traditional) calculation (de Groot & Mazur, 1984; Bird et al. 2006)

\[
\hat{\sigma} = \langle j_Q \rangle \cdot \nabla \left(\frac{1}{T} \right) - \sum_c \langle j_c \rangle \cdot \nabla \left(\frac{\mu_c}{M_c T} \right) - \langle \bar{\tau} \rangle : \left(\frac{\nabla v}{T} \right)^T
\]
Since constraints are linearly independent, identify multipliers \propto gradients, hence

$$\hat{\mathcal{H}}_{st}^* = \ln Z - \frac{\hat{\sigma}}{\mathcal{K}}$$

where $\mathcal{K} = \text{constant (units of J K}^{-1} \text{ m}^{-3} \text{ s}^{-1})$

Hence must minimise potential:

$$\phi_{st} = -\ln Z = -\hat{\mathcal{H}}_{st}^* - \frac{\hat{\sigma}}{\mathcal{K}}$$

Again have changes of entropy (here $\hat{\mathcal{H}}_{st}^*$) within and outside the system:

<table>
<thead>
<tr>
<th>Max $\hat{\mathcal{H}}_{st}^*$</th>
<th>Max $\hat{\sigma}$</th>
<th>Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max $\hat{\mathcal{H}}_{st}^*$</td>
<td>Min $\hat{\sigma}$</td>
<td>Driven by $\Delta\hat{\mathcal{H}}_{st}^* \geq \frac{</td>
</tr>
<tr>
<td>Min $\hat{\mathcal{H}}_{st}^*$</td>
<td>Max $\hat{\sigma}$</td>
<td>Driven by $\frac{\Delta\hat{\sigma}}{\mathcal{K}} \geq \Delta\hat{\mathcal{H}}_{st}^* \geq 0$</td>
</tr>
</tbody>
</table>

Only two of these give a local MaxEP principle!
Conclude:

1. Can derive a local conditional MaxEP principle, based on MaxEnt
2. MaxEP is not universal!
 (c.f. minimum enthalpy principle in thermodynamics)

\[
d\phi_{st} = -d\dot{\mathcal{S}}_{st} - \frac{d\hat{\mathcal{G}}}{\mathcal{K}} \leq 0
\]

\[
d\phi_{eq} = d\frac{G}{kT} = -\frac{dS^*}{k} + d\frac{\langle H \rangle}{kT} \leq 0
\]
MaxEnt Analysis (Global)

(Dewar, 2003, 2005 - reinterpreted)

Consider boundary Ω of control volume, with:
- mean fluxes / rates $\langle j_Q \rangle(\Omega), \langle j_c \rangle(\Omega), \langle \tilde{\tau} \rangle(\Omega)$
- instantaneous fluxes / rates $j_Q(\Omega), \{j_c\}(\Omega), \tilde{\tau}(\Omega)$

Maximise global flux entropy $S_\Omega \to$ most probable steady-state:

$$p_i^* = \frac{1}{Z_\Omega} q_i \exp \int_{\Omega} \left(-j_Q \cdot \eta_Q - \sum_c j_c \cdot \eta_c - \tilde{\tau} : \eta_\tau \right) dA$$

$$S^*_\Omega = \ln Z_\Omega + \int_{\Omega} \left(\langle j_Q \rangle \cdot \eta_Q + \sum_c \langle j_c \rangle \cdot \eta_c + \langle \tilde{\tau} \rangle : \eta_\tau \right) dA,$$

Compare:

$$\dot{S}_\Omega = \int_{\Omega} \left(\langle j_Q \rangle \cdot \frac{1}{T} - \sum_c \langle j_c \rangle \cdot \frac{\mu_c}{M_c T} - \langle \tilde{\tau} \rangle : \frac{v^T}{T} \right) dA$$

η_r = Lagrangian multipliers
Identify multipliers \(\propto \) intensive variables along boundary, hence

\[
\hat{s}_\Omega^* = \ln Z_\Omega - \frac{\dot{\sigma}_\Omega}{\kappa}
\]

where \(\kappa = \text{constant (units of J K}^{-1} \text{s}^{-1}) \)

Hence must minimise potential:

\[
\phi_\Omega = -\ln Z_\Omega = -\hat{s}_\Omega^* - \frac{\dot{\sigma}_\Omega}{\kappa}
\]

Again have changes of entropy \((\hat{s}_\Omega)\) within and outside the system

\(\rightarrow\) global MaxEP principle in some cases

Unresolved questions

1. How are global and local MaxEP connected?

2. What does a mean mean?
 - in fact “steady state” is anything but steady!
Turbulent Flow in a Pipe
Turbulent Flow in a Pipe

Head loss (friction loss) = pressure loss per unit weight

\[H_L = \frac{fL}{2gD} \frac{U|U|}{L} \]

Reynolds number:

\[|Re| = \frac{\rho D |U|}{\mu} \]

Laminar: \(f_{lam} = \frac{64}{|Re|} \)

Turbulent: empirical only!

Smooth: \(\frac{1}{\sqrt{f}} = 2.0 \log_{10}(Re\sqrt{f}) - 0.8 \)

Fully rough: \(\frac{1}{\sqrt{f}} = 2.0 \log_{10}\left(\frac{D}{\varepsilon}\right) - 1.14 \)

General

\[\frac{1}{\sqrt{f}} - 2\log_{10}\left(\frac{D}{\varepsilon}\right) = 1.14 - 2.0 \log_{10}\left(1 + \frac{9.28}{\text{Re}\left(\frac{D}{\varepsilon}\right)^{\frac{1}{2}}\sqrt{f}}\right) \]

\(f \) = Darcy friction factor

\(g \) = gravitational accel.

\(D \) = pipe diameter

\(L \) = pipe length

\(U \) = mean velocity

\(\rho \) = density

\(\mu \) = viscosity

\(\varepsilon \) = surface roughness
Moody diagram:
Power law: \[H_L = XQ|Q|^{\alpha-1} \]

with \(X \) = function of pipe and fluid properties (and flow)
\(Q \) = volumetric flow rate
\(1 \leq \alpha \leq 2 \) indicates flow regime

Entropy production:
\[
\frac{P_L}{\rho g} = \frac{\dot{\sigma}T}{\rho g} = |H_L Q| = |XQ^{\alpha+1}| \geq 0
\]

Dimensionless form:
\[
gamma = \frac{4\dot{\sigma}T}{\pi d\mu g L} = \left| \frac{H_L}{L} \right| \text{Re} = \frac{1}{2} f \left| \text{Re} \right|^3 \geq 0
\]

where \(\text{Ga} = \frac{\rho^2 gD^3}{\mu^2} \) = Galileo number
Plot:
Plot:

Benard cell

Ecosystem

Chemical oxidation (thermodynamic mode)
Bacterial growth (dissipative structure)
Flow in Parallel Pipes
(Flow Constraint)

Laws:
1. Conservation of mass (fluid): \(Q - Q_1 - Q_2 = 0 \)
2. Head losses the same: \(H_{L1} = H_{L2} \)
 \[\therefore X_1 Q_1 |Q_1|^{\alpha_1 - 1} = X_2 Q_2 |Q_2|^{\alpha_2 - 1} \]

Have 2 equations in 2 unknowns \(\rightarrow \) deterministic
Consider “minimum EP” principle (a la Prigogine):

\[
\min \frac{P_L}{\rho g} = \min \frac{\dot{\sigma} T}{\rho g} = \min \sum_j |H_{Lj}Q_j|
\]

Can prove that this “minEP” principle gives (known) steady state
BUT - requires power law pipes of constant \(\alpha \)

AND - no dependence on \(T \)
\(\rightarrow \) really a minimum power principle

Still have Paltridge MaxEP principle \(\rightarrow \) selects laminar or turbulent flow
Simultaneous effects:

- Locus of non-steady-state turbulent points
- Locus of non-steady-state laminar points

Graph showing:
- Steady-state laminar solution
- Steady-state turbulent solution

Axes:
- \(\frac{\dot{T}}{\rho g} (10^{-8} \text{ m}^4 \text{ s}^{-1}) \)
- \(|Re_{\text{tot}}| / 10^3 \)
- \(|Re_1| / 10^3 \)
Flow in Parallel Pipes
(Head Constraint)

Laws:
1. Head losses the same: \[\Delta H = H_{L1} = H_{L2} \]
 \[\therefore X_1 Q_1 |Q_1|^{\alpha_1 - 1} = X_2 Q_2 |Q_2|^{\alpha_2 - 1} \]
2. Heat = work:
 \[W = \rho g \Delta H \parallel Q_1 + Q_2 = \rho g (|H_{L1} Q_1| + |H_{L2} Q_2|) \]

Again have 2 equations in 2 unknowns → deterministic
Consider “maximum EP” principle (a la Županović):

\[
\max \frac{P_L}{\rho g} = \max \frac{\sigma T}{\rho g} = \max \sum_j |H_{Lj}Q_j|
\]

Can prove that this “maxEP” principle gives (known) steady state
BUT - requires power law pipes of constant \(\alpha \)
AND - no dependence on \(T \)
\(\rightarrow \) really a maximum power principle

Still have the Paltridge principle, but now inverted as MinEP principle \(\rightarrow \)
selects laminar or turbulent flow
Simultaneous effects:

- steady-state laminar solution
- steady-state turbulent solution
- locus of non-steady-state laminar points
- locus of non-steady-state turbulent points
Summary:

Although based on empirical equations, can infer:

1. Single pipe (constant flow rate):
 - Paltridge MaxEP principle \(\rightarrow\) selects laminar or turbulent flow

2. Parallel pipes (total flow rate constraint)
 - Paltridge MaxEP principle \(\rightarrow\) selects laminar or turbulent flow
 - (trivial) MinEP or min. power principle \(\rightarrow\) choose steady state from non-steady state flows

3. Parallel pipes (total head constraint)
 - (inverted) Paltridge MinEP principle \(\rightarrow\) selects laminar or turbulent flow
 - (trivial) MaxEP or min. power principle \(\rightarrow\) choose steady state from non-steady state flows

Planetary Climate Systems

MaxEP Models
- since Paltridge (1975), many n-box MaxEP models of climate systems on rocky planets, incl. surface-atmosphere and (sometimes) ocean interactions
- reasonable success (planetary scale): Earth, Titan, Mars
- much less success: Venus

Gas Giants
- no (?) surface interactions \(\therefore \) need different model
- extrasolar planets:
 - many new types (tidally locked “hot Jupiters”; “hot Neptunes”, super-Earths/Venuses)
- data much more sparse
 (intensities not location-specific)

(e.g. HD189733b, Knutson et al. 2007)
Conclusions
Conclusions

1. Concepts
 - introduction to MaxEP
 - MaxEnt algorithm \rightarrow minimise potential function ϕ
 - application to equilibrium systems \rightarrow use of Planck potential

2. Analysis of steady-state systems
 - apply MaxEnt \rightarrow steady-state position (local, global)
 - minimise potential ϕ_{st} \rightarrow conditional MaxEP principle

3. Turbulent flow in a pipe
 - single pipe: laminar-turbulent transition due to MaxEP
 - parallel pipes
 - const. Q: Paltridge MaxEP + (trivial) min. power
 - const. ΔH: inverted Paltridge MinEP + (trivial) max power

4. Exoplanets
 - upper atmospheric MaxEP model
Acknowledgments

I would like to thank:

• The Newton Institute, Cambridge, for this opportunity
• The University of New South Wales, Australia
• The European Commission, Bjarne Andresen + Flemming Topsøe for Marie Curie Incoming International Fellowship under FP6, 2007-2008
• Axel Kleidon of Max-Planck-Institut für Biogeochemie, Jena, for invitations + funding
• Discussions with Bjarne Andresen, Adrian Bejan, Gian-Paolo Beretta, Ariel Caticha, Peter Cox, Michel Crucifix, Matthias Cuntz, Robert Dewar, Rod Dewar, Graham Farquhar, Ali Ghaderi, Philip Goyal, Marian Grendar, Peter Harremöes, Per Hedegård, Tim Jupp, Kevin Knuth, Charley Lineweaver, Ralph Lorenz, Filip Meysman, Jan Naudts, Bernd Noack, Hisashi Ozawa, Garth Paltridge, Angelo Plastino, Arthur Ramer, Stephen Roberts, John Skilling, Hiroki Suyari, Flemming Topsøe, Sergio Verdu, Grzegorz Wilk + many others
Thank you!