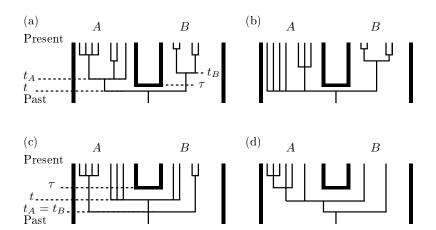
Concordance between species trees and gene genealogies with asynchronous multiple mergers

Bjarki Eldon¹ and James Degnan²

¹University of Oxford, Oxford, UK

²University of Canterbury, Christchurch, New Zealand

Gene genealogies in two species A and B



Kingman coalescent

Kingman (1982) coalescent only allows two ancestral lineages to coalesce each time

$$q_{\xi o \eta} = egin{cases} 1 & \xi imes \eta \ - inom{|\xi|}{2} & \xi = \eta \ 0 & ext{otherwise} \end{cases}$$

Λ coalescent

Donnelly and Kurtz (1999), Sagitov (1999), and Pitman (1999) study Λ coalescent which allows asynchronous multiple mergers of ancestral lineages

$$q_{\xi,\eta} = \begin{cases} \int_0^1 x^{k-2} (1-x)^{|\xi|-k} d\Lambda(x) & \xi \prec \eta \\ & 2 \le k \le |xi| \\ -\sum_{\xi \prec \eta} q_{\xi,\eta} & \xi = \eta \\ 0 & \text{otherwise} \end{cases}$$

Heavy-tail population model

Schweinsberg (2003)

Each individual contributes X_i potential offspring with tail probabilities, C and α positive constants,

$$\lim_{k\to\infty} Ck^{\alpha}\mathbb{P}[X_i\geq k]=1$$

Can sample N offspring from pool of potential offspring since

$$\mathbb{E}[X_i] > 1$$

Beta $(2 - \alpha, \alpha)$ coalescent

If $1 < \alpha < 2$ obtain a Λ coalescent, $B(\cdot, \cdot)$ is beta function,

$$q_{\xi,\eta} = egin{cases} rac{B(k-lpha,|\xi|-k+lpha)}{B(2-lpha,lpha)} & \xi \prec \eta \ & 2 \leq k \leq |xi| \ -\sum_{\xi \prec \eta} q_{\xi,\eta} & \xi = \eta \ 0 & ext{otherwise} \end{cases}$$

Point mass model

Eldon and Wakeley (2006)

One parent each timestep contributes a random number \boldsymbol{U} of offspring to replace those who perished

$$\mathbb{P}[U=u] = (1 - N^{-\gamma}) \, \delta_{u,1} + N^{-\gamma} \delta_{u,\lfloor \psi N \rfloor}$$

Gives coalescence rates, if $0 < \gamma < 2$,

$$\lambda_{b,k} = \binom{b}{k} \psi^k (1 - \psi)^{b-k}$$

Spectral expansion of the rate matrix

Let $(A_t)_{t\geq 0}$ denote the Markov chain counting the number of ancestral lineages in the coalescent.

Need to compute $\mathbb{P}[A_t = j | A_0 = i]$

$$\mathbb{P}[A_t = j | A_0 = i] = \sum_{k=j}^{i} e^{-t\lambda_k} r_i^{(k)} \ell_j^{(k)}$$

The right and left eigenvectors $r^{(k)}$ and $\ell^{(k)}$, respectively, are straightforward to obtain for the Kingman coalescent (Tavaré 1984)

Sprectal expansion for Λ coalescent

In case of a Λ coalescent, $r^{(k)}$ and $\ell^{(k)}$ can be obtained by recursion

$$\ell_j^{(k)} = rac{q_{j+1,j}\ell_{j+1}^{(k)} + \dots + q_{k,j}\ell_k^{(k)}}{q_k - q_j}, \quad 1 \leq j < k$$

$$\ell_j^{(k)} = 0 \text{ if } j > k; \text{ and}$$

$$r_j^{(k)} = \frac{q_{j,k}r_k^{(k)} + \dots + q_{j,j-1}r_{j-1}^{(k)}}{q_k - q_j}, \quad 1 < k < j \le n,$$

$$r_j^{(k)} = 0 \text{ if } j < k.$$

Conditioning on the embedded chain not practical ...

Another method is conditioning on the paths of A_t Conditional on path a of A_t , T(a) sum of indep. Exponentials

$$g_{i,j}(t,a) = egin{cases} \mathbb{P}[T(a) \leq t, T(a) + T_j > t] & 2 \leq j < i \ \\ \mathbb{P}[T(a) \leq t] & j = 1 \ \\ e^{-q_i t} & j = i \end{cases}$$

and

$$g_{i,j}(t) = \sum_{a} g_{i,j}(t,a)p(a)$$

Not practical, since 2^{i-j-1} possible paths from i to j < i

... unless the most probable paths can be identified

fractiles					
π	i	50%	75%	90%	<i>c</i> *
1.01	5	0.324	0.449	0.643	$(2,\ldots,2)$
	20	$6.7 \cdot 10^{-4}$	0.0013	0.0024	(19, 2)
1.2	5	0.194	0.306	0.533	$(2,\ldots,2)$
	20	$1.4\cdot 10^{-3}$	$3.3 \cdot 10^{-3}$	$7.4 \cdot 10^{-3}$	(18, 2, 2)
1.5	5	0.083	0.153	0.417	$(2,\ldots,2)$
	20	$1.8\cdot 10^{-5}$	$7.5 \cdot 10^{-5}$	$2.9 \cdot 10^{-4}$	$(2,\ldots,2)$
0.01	5	0.002	800.0	0.307	$(2,\ldots,2)$
	20	$1.2\cdot 10^{-15}$	$4.3 \cdot 10^{-13}$	$7.9\cdot 10^{-11}$	$(2,\ldots,2)$
0.2	5	0.062	0.209	0.506	$(2,\ldots,2)$
	20	$5.1 \cdot 10^{-4}$	0.003	0.016	$(5,4,4,3,2,\ldots,2)$
0.5	5	0.409	0.576	0.767	(3,2,2)
	20	$1.2\cdot 10^{-13}$	$2.1\cdot 10^{-10}$	$1.2\cdot 10^{-7}$	(11,6,3,2,2)

Computing probability P of reciprocal monophyly ...

Define T as the time when lineages from populations A and B first coalesce

Define $T_X \equiv \inf\{t : A_t = 1\}$ for population $X \in \{A, B\}$

The probability P of reciprocal monophyly is given by

$$P = \mathbb{P}[T > T_A, T > T_B]$$

... recursively

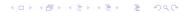
The probability P is computed recursively

$$P = \sum_{m_A=1}^{n_A} \sum_{m_B=1}^{n_B} P(m_A, m_B) g_{n_A, m_A, \pi_A}(\tau) g_{n_B, m_B, \pi_B}(\tau)$$

where au is the time of divergence, and, with $\emph{m}=\emph{m}_{\rm A}+\emph{m}_{\rm B}$,

$$P(m_{A}, m_{B}) = \sum_{k=2}^{\max(m_{A}, m_{B})} \left(\frac{\binom{m_{A}}{k}}{\binom{m}{k}} p(m, k) P(m_{A} - k + 1, m_{B}) + \frac{\binom{m_{B}}{k}}{\binom{m}{k}} p(m, k) P(m_{A}, m_{B} - k + 1) \right)$$

with P(1,1)=1, and p(m,k) is probability of k-merger among $m=m_{\scriptscriptstyle A}+m_{\scriptscriptstyle B}$ lineages



Paraphyly and polyphyly

Probabilities of paraphyly and polyphyly can be obtained similarly. Define $P_A = \mathbb{P}[T > T_A]$. The probability P_B^* of paraphyly of B with respect to A is

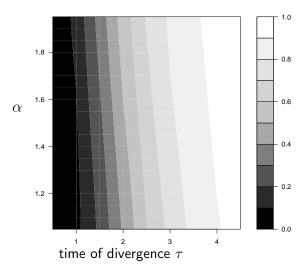
$$P_B^* = \mathbb{P}[T > T_A, T \le T_B] = \mathbb{P}[T > T_A] - \mathbb{P}[T > T_A, T > T_B]$$

Polyphyly is the event $\{T \leq T_A\} \cap \{T \leq T_B\}$ which occurs with probability P^* given by

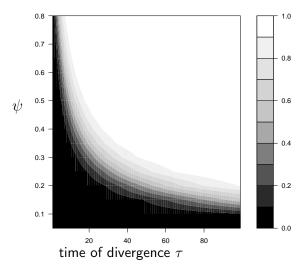
$$P^{\star} = \mathbb{P}[T \leq T_{A}, T \leq T_{B}] = 1 - P_{A} - P_{B} + P.$$

The probabilities P_A and P_B can be obtained recursively analogously to P

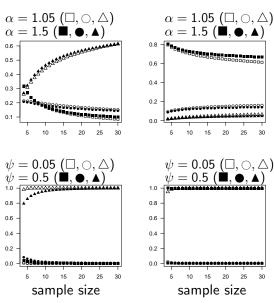
Probability P of monophyly as a function of au and lpha



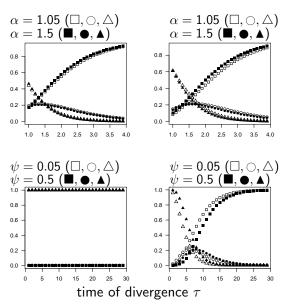
Probability P of monophyly as a function of au and ψ



Monophyly (\Box, \blacksquare) , Paraphyly (\bigcirc, \bullet) , Polyphyly $(\triangle, \blacktriangle)$



Monophyly (\Box, \blacksquare) , Paraphyly (\bigcirc, \bullet) , Polyphyly $(\triangle, \blacktriangle)$



Unit of time of divergence

Different coalescent processes have different timescales Unit of time is c_N given by

$$c_{N} = \frac{\mathbb{E}[\nu_{1}(\nu_{1}-1)]}{N-1}$$

For the Beta(2 $-\alpha, \alpha$) coalescent, $c_{_N}^{-1}N^{\alpha-1}$, $1 < \alpha < 2$ For the ψ -coalescent, $c_{_N}^{-1} \sim N^{\gamma}$ with $1 < \gamma < 2$ For the Kingman coalescent $c_{_N} \sim N$ (WF), or N^2 (Moran)

Conclusions

- The effects of coalescent parameters on probabilities on monophyly, paraphyly, and polyphyly depend on the coalescent process and if the population is ancestral or derived
- ▶ When different populations have different coalescent processes running on different timescales, scaling time of divergence becomes a key issue in terms of inference

Acknowledgments

- ▶ The organisers: Vincent Moulton, Mike Steel, Tandy Warnow
- Newton Institute
- ► EPSRC, Royal Society, Marsden fund