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Gene genealogies in two species A and B
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Kingman coalescent

Kingman (1982) coalescent only allows two ancestral lineages to
coalesce each time
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N\ coalescent

Donnelly and Kurtz (1999), Sagitov (1999), and Pitman (1999)
study A coalescent which allows asynchronous multiple mergers of
ancestral lineages
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Heavy-tail population model

Schweinsberg (2003)

Each individual contributes X; potential offspring with tail
probabilities, C and « positive constants,

klim CkP[X; > k] =1
Can sample N offspring from pool of potential offspring since

E[X/] > 1



Beta(2 — «, a) coalescent

If 1 < o < 2 obtain a A coalescent, B(,-) is beta function,
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Point mass model

Eldon and Wakeley (2006)
One parent each timestep contributes a random number U of
offspring to replace those who perished

]P[U = U] = (1 - Ni’y) 5u,1 + N775U7L¢NJ

Gives coalescence rates, if 0 < v < 2,

Abk = <i>¢k (1—yp)>*



Spectral expansion of the rate matrix

Let (A¢),~ denote the Markov chain counting the number of
ancestral lineages in the coalescent.
Need to compute P[A; = j|Ag = ]
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The right and left eigenvectors r(k) and ¢(K), respectively, are

straightforward to obtain for the Kingman coalescent (Tavaré
1984)



Sprectal expansion for A coalescent

In case of a A coalescent, r(k) and ¢(¥) can be obtained by recursion
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Conditioning on the embedded chain not practical ...

Another method is conditioning on the paths of A;
Conditional on path a of A, T(a) sum of indep. Exponentials

(P[T(a) <t T(@+T;>t] 2<j<i

gij(t,a) = ¢ P[T(a) < t] ji=1

e~ ait Jj=i

and

g,',j(t) = Zgi,j(t’ a)p(a)

Not practical, since 2/7~1 possible paths from i to j < i



. unless the most probable paths can be identified

fractiles

m i 50% 75% 90% c*

1.01 5 0.324 0.449 0.643 (2,...,2)
20 6.7-107* 0.0013 0.0024 (19,2)

1.2 5 0.194 0.306 0.533 (2,...,2)
20 1.4-107% 33-107% 7.4-107% (18,2,2)

1.5 5 0.083 0.153 0.417 (2,...,2)
20 1.8-107% 75-107°% 29-107% (2,...,2)

001 5 0.002 0.008 0.307 (2,...,2)
20 1.2-107 43.1071 7.9.107Y1 (2,...,2)

02 5 0.062 0.209 0.506 2,...,2)
20 5.1-107% 0.003 0.016 (5,4,4,3,2,...,2)

05 5 0.409 0.576 0.767 (3,2,2)
20 1.2-1071% 21.10719 1.2.1077 (11,6,3,2,2)




Computing probability P of reciprocal monophyly ...

Define T as the time when lineages from populations A and B first

coalesce
Define Tx = inf{t: A; = 1} for population X € {A, B}
The probability P of reciprocal monophyly is given by

P:P[T> TA,T> TB]



. recursively

The probability P is computed recursively

n n
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where 7 is the time of divergence, and, with m=m, + m,
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with P(1,1) = 1, and p(m, k) is probability of k-merger among
m = m, + m, lineages

+




Paraphyly and polyphyly

Probabilities of paraphyly and polyphyly can be obtained similarly.
Define P4 = P[T > Ta]. The probability P§ of paraphyly of B
with respect to A is

P =P[T>T, T<T]=P[T>T,]|-P[T>T,T>T,]

Polyphyly is the event {T < T,} N{T < T,} which occurs with
probability P* given by

Pr=P[T<T, T<T,]=1-Ps—Pg+P.

The probabilities P4 and Pg can be obtained recursively
analogously to P



Probability P of monophyly as a function of 7 and «
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Probability P of monophyly as a function of 7 and
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Monophyly (CJ, ®), Paraphyly (O, ®), Polyphyly (A, &)
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Monophyly (CJ, ®), Paraphyly (O, ®), Polyphyly (A,
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Unit of time of divergence

Different coalescent processes have different timescales
Unit of time is ¢, given by

. E[vi(v1 — 1)]
NN -1

For the Beta(2 — «, ) coalescent, c;lNa_l, l<a<?
For the 1-coalescent, c,;l ~ N7 with 1 <y <2
For the Kingman coalescent c, ~ N (WF), or N2 (Moran)



Conclusions

» The effects of coalescent parameters on probabilities on
monophyly, paraphyly, and polyphyly depend on the
coalescent process and if the population is ancestral or derived

» When different populations have different coalescent processes
running on different timescales, scaling time of divergence
becomes a key issue in terms of inference
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