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Kingman coalescent

Kingman (1982) coalescent only allows two ancestral lineages to
coalesce each time

q
ξ→η =
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0 otherwise



Λ coalescent

Donnelly and Kurtz (1999), Sagitov (1999), and Pitman (1999)
study Λ coalescent which allows asynchronous multiple mergers of
ancestral lineages

q
ξ,η

=



∫ 1
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Heavy-tail population model

Schweinsberg (2003)
Each individual contributes Xi potential offspring with tail
probabilities, C and α positive constants,

lim
k→∞

CkαP[Xi ≥ k] = 1

Can sample N offspring from pool of potential offspring since

E[Xi ] > 1



Beta(2− α, α) coalescent

If 1 < α < 2 obtain a Λ coalescent, B(·, ·) is beta function,

q
ξ,η

=
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Point mass model

Eldon and Wakeley (2006)
One parent each timestep contributes a random number U of
offspring to replace those who perished

P[U = u] =
(
1− N−γ

)
δu,1 + N−γδu,bψNc

Gives coalescence rates, if 0 < γ < 2,

λb,k =

(
b

k

)
ψk (1− ψ)b−k



Spectral expansion of the rate matrix

Let (At)t≥0 denote the Markov chain counting the number of
ancestral lineages in the coalescent.
Need to compute P[At = j |A0 = i ]

P[At = j |A0 = i ] =
i∑

k=j

e−tλk r
(k)
i `

(k)
j

The right and left eigenvectors r (k) and `(k), respectively, are
straightforward to obtain for the Kingman coalescent (Tavaré
1984)



Sprectal expansion for Λ coalescent

In case of a Λ coalescent, r (k) and `(k) can be obtained by recursion

`
(k)
j =

qj+1,j `
(k)
j+1 + · · ·+ q

k,j
`
(k)
k

q
k
− qj

, 1 ≤ j < k

`
(k)
j = 0 if j > k; and

r
(k)
j =

q
j,k

r (k)
k

+ · · ·+ qj,j−1r
(k)
j−1

qk − qj
, 1 < k < j ≤ n,

r
(k)
j = 0 if j < k.



Conditioning on the embedded chain not practical ...

Another method is conditioning on the paths of At

Conditional on path a of At , T (a) sum of indep. Exponentials

gi ,j(t, a) =



P[T (a) ≤ t,T (a) + Tj > t] 2 ≤ j < i

P[T (a) ≤ t] j = 1

e−qi t j = i

and
gi,j (t) =

∑
a

gi,j (t, a)p(a)

Not practical, since 2i−j−1 possible paths from i to j < i



... unless the most probable paths can be identified

fractiles
π i 50% 75% 90% c?

1.01 5 0.324 0.449 0.643 (2, . . . , 2)
20 6.7 · 10−4 0.0013 0.0024 (19, 2)

1.2 5 0.194 0.306 0.533 (2, . . . , 2)
20 1.4 · 10−3 3.3 · 10−3 7.4 · 10−3 (18, 2, 2)

1.5 5 0.083 0.153 0.417 (2, . . . , 2)
20 1.8 · 10−5 7.5 · 10−5 2.9 · 10−4 (2, . . . , 2)

0.01 5 0.002 0.008 0.307 (2, . . . , 2)
20 1.2 · 10−15 4.3 · 10−13 7.9 · 10−11 (2, . . . , 2)

0.2 5 0.062 0.209 0.506 (2, . . . , 2)
20 5.1 · 10−4 0.003 0.016 (5, 4, 4, 3, 2, . . . , 2)

0.5 5 0.409 0.576 0.767 (3, 2, 2)
20 1.2 · 10−13 2.1 · 10−10 1.2 · 10−7 (11, 6, 3, 2, 2)



Computing probability P of reciprocal monophyly ...

Define T as the time when lineages from populations A and B first
coalesce
Define TX ≡ inf{t : At = 1} for population X ∈ {A,B}
The probability P of reciprocal monophyly is given by

P = P[T > TA,T > TB ]



... recursively

The probability P is computed recursively

P =

n
A∑

m
A
=1
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m
B
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where τ is the time of divergence, and, with m = m
A

+ m
B

,

P(m
A
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B
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with P(1, 1) = 1, and p(m, k) is probability of k-merger among
m = m

A
+ m

B
lineages



Paraphyly and polyphyly

Probabilities of paraphyly and polyphyly can be obtained similarly.
Define PA = P[T > TA]. The probability P∗B of paraphyly of B
with respect to A is

P∗B = P[T > T
A
,T ≤ T

B
] = P[T > T

A
]− P[T > T

A
,T > T

B
]

Polyphyly is the event {T ≤ T
A
} ∩ {T ≤ T

B
} which occurs with

probability P? given by

P? = P[T ≤ T
A
,T ≤ T

B
] = 1− PA − PB + P.

The probabilities PA and PB can be obtained recursively
analogously to P



Probability P of monophyly as a function of τ and α
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Probability P of monophyly as a function of τ and ψ
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Monophyly (�,�), Paraphyly (#, ), Polyphyly (4,N)
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Monophyly (�,�), Paraphyly (#, ), Polyphyly (4,N)
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Unit of time of divergence

Different coalescent processes have different timescales
Unit of time is c

N
given by

c
N

=
E[ν1(ν1 − 1)]

N − 1

For the Beta(2− α, α) coalescent, c−1
N

Nα−1, 1 < α < 2
For the ψ-coalescent, c−1

N
∼ Nγ with 1 < γ < 2

For the Kingman coalescent c
N
∼ N (WF), or N2 (Moran)



Conclusions

I The effects of coalescent parameters on probabilities on
monophyly, paraphyly, and polyphyly depend on the
coalescent process and if the population is ancestral or derived

I When different populations have different coalescent processes
running on different timescales, scaling time of divergence
becomes a key issue in terms of inference
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