Vector-valued Reproducing Kernel Hilbert Spaces

with applications to Function Extension and Image Colorization

Hà Quang Minh
minh.haquang@iit.it

Istituto Italiano di Tecnologia
Outline of the Talk

- Brief Review of Scalar-valued RKHS
- Vector-valued RKHS
- Function Extension: 2 algorithms
- Application: Image Colorization
Colorization: Function extension

Figure 1: About 0.96% of color is given
Positive Definite Kernels

- X any nonempty set
- $K : X \times X \to \mathbb{R}$ is a (real-valued) positive definite kernel if it is symmetric and

\[
\sum_{i,j=1}^{N} a_i a_j K(x_i, x_j) \geq 0
\]

for any finite set of points $\{x_i\}_{i=1}^{N} \in X$ and real numbers $\{a_i\}_{i=1}^{N} \in \mathbb{R}$.

- Complex-valued kernels are often encountered in complex analysis.
Abstract theory due to Aronszajn (1950).

A positive definite kernel on $X \times X$. For each $x \in X$, there is a function $K_x : X \to \mathbb{R}$, with $K_x(t) = K(x, t)$.

$\mathcal{H}_K = \{ \sum_{i=1}^{N} a_i K_{x_i} : N \in \mathbb{N} \}$

with inner product

$$\langle \sum_i a_i K_{x_i}, \sum_j b_j K_{y_j} \rangle_K = \sum_{i,j} a_i b_j K(x_i, y_j)$$

$\mathcal{H}_K = \text{RKHS associated with } K \text{ (unique).}$
Reproducing Property: for each $f \in \mathcal{H}_K$, for every $x \in X$

$$f(x) = \langle f, K_x \rangle_K$$

Assumption

$$\kappa = \sup_{x \in X} \sqrt{K(x, x)} < \infty$$

Then

$$\|f\|_{\infty} \leq \kappa \|f\|_K$$
Examples: RKHS

For $s > n/2$, the Sobolev space $H^s(\mathbb{R}^n)$, with

$$\| f \|_{H^s(\mathbb{R}^n)}^2 = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \left| (1 + |\xi|^2)^{s/2} \hat{f}(\xi) \right|^2 d\xi < \infty,$$

is an RKHS, with kernel

$$K(x, y) = \frac{1}{(2\pi)^n} \frac{1}{(1 + |\xi|^2)^s} (x - y)$$
Examples: RKHS

The Gaussian kernel $K(x, y) = \exp(-\frac{|x-y|^2}{\sigma^2})$ on \mathbb{R}^n induces the space

$$\mathcal{H}_K = \{ ||f||^2_{\mathcal{H}_K} = \frac{1}{(2\pi)^n (\sigma \sqrt{\pi})^n} \int_{\mathbb{R}^n} e^{\frac{\sigma^2|\xi|^2}{4}} |\hat{f}(\xi)|^2 d\xi < \infty \}.$$

The Laplacian kernel $K(x, y) = \exp(-a|x-y|)$, $a > 0$, on \mathbb{R}^n induces the space

$$\mathcal{H}_K = \{ ||f||^2_{\mathcal{H}_K} = \frac{1}{(2\pi)^n} \frac{1}{aC(n)} \int_{\mathbb{R}^n} (a^2 + |\xi|^2)^{\frac{n+1}{2}} |\hat{f}(\xi)|^2 d\xi < \infty \}.$$

with $C(n) = 2^n \pi^{\frac{n-1}{2}} \Gamma\left(\frac{n+1}{2}\right)$
Examples: RKHS

- The Laplacian kernel has less smoothing effect than the Gaussian kernel (may be useful if we do not want very smooth functions)

- Generalization of the Gaussian kernel:
 \[K(x, y) = \exp\left(-\frac{|x-y|^p}{\sigma^2}\right), \text{ where } 0 \leq p \leq 2 \] (Schoenberg 1938).
Outline of the Talk

- Brief Review of Scalar-valued RKHS
- **Vector-valued** RKHS
- Function Extension: 2 algorithms
- Application: Image Colorization
Vector-valued RKHS

- Laurent Schwartz (1964): very general framework for RKHS of functions with values in locally convex topological spaces

- Here we will focus on RKHS of functions with values in a Hilbert space.
Operator-valued kernels

- D a nonempty set, \mathcal{W} a real Hilbert space with the inner product $\langle \cdot, \cdot \rangle_\mathcal{W}$, $\mathcal{L}(W)$ the Banach space of bounded linear operators on \mathcal{W}.

- A function $K : D \times D \to \mathcal{L}(\mathcal{W})$ is said to be an **operator-valued positive definite kernel** if for each pair $(x, y) \in D \times D$, $K(x, y) \in \mathcal{L}(\mathcal{W})$ is a self-adjoint operator and

$$
\sum_{i,j=1}^{N} \langle w_i, K(x_i, x_j)w_j \rangle_\mathcal{W} \geq 0
$$

for every finite set of points $\{x_i\}_{i=1}^{N}$ in D and $\{w_i\}_{i=1}^{N}$ in \mathcal{W}, where $N \in \mathbb{N}$.
Vector-valued RKHS

- $\mathcal{W}^D = \text{vector space of all functions } f : D \rightarrow \mathcal{W}$.

- For each $x \in D$ and $w \in \mathcal{W}$, we form a function $K_xw = K(., x)w \in \mathcal{W}^D$ defined by

 $$(K_xw)(y) = K(y, x)w \quad \text{for all } y \in D.$$

Consider the set

$\mathcal{H}_0 = \text{span}\{K_xw \mid x \in D, \ w \in \mathcal{W}\} \subset \mathcal{W}^D$. For

$f = \sum_{i=1}^N K_x w_i$, $g = \sum_{i=1}^N K_y z_i \in \mathcal{H}_0$, we define

$$\langle f, g \rangle_{\mathcal{H}_K} = \sum_{i,j=1}^N \langle w_i, K(x_i, y_j)z_j \rangle_{\mathcal{W}}.$$
Taking the closure of \mathcal{H}_0 gives the Hilbert space \mathcal{H}_K.

The **reproducing property** is

$$\langle f(x), w \rangle_{\mathcal{W}} = \langle f, K_x w \rangle_{\mathcal{H}_K} \quad \text{for all} \quad f \in \mathcal{H}_K.$$

For each $x \in D$ and $f \in \mathcal{H}_K$:

$$\|f(x)\|_{\mathcal{W}} \leq \sqrt{\|K(x, x)\|} \|f\|_{\mathcal{H}_K}. $$
Simple example: let $k(x, y)$ be a real-valued positive definite kernel and B a positive definite matrix. Then

$$K(x, y) = Bk(x, y)$$

is a matrix-valued kernel, which induces a vector-valued RKHS
Outline of the Talk

- Brief Review of Scalar-valued RKHS
- Vector-valued RKHS
- Function Extension: 2 algorithms
- Application: Image Colorization
Function Extension

- $D \subset \Omega$ are closed sets in a complete separable metric space
- $f : D \to \mathcal{W}$,
- Goal: extend $f : D \to \mathcal{W}$ to $F : \Omega \to \mathcal{W}$, such that F is close to f on the smaller set D, and reasonably well-behaved on the larger set Ω.
Extension Operator

- Assume we have a kernel $K : \Omega \times \Omega \to \mathcal{W}$.
- Assume that $K(x, x)$ is compact for each x, and that
 \[\sup_{x \in \Omega} \|K(x, x)\| < \infty. \]
- For $f : D \to \mathcal{W}$, define $L_K : L_2^{\mu}(D; \mathcal{W}) \to \mathcal{H}_K(\Omega)$, with
 \[L_K f(x) = \int_D K(x, y) f(y) d\mu(y), \]
 for every $x \in \Omega$. This defines an extension operator.

The adjoint operator $L_K^* : \mathcal{H}_K(\Omega) \to L_2^{\mu}(D; \mathcal{W})$ is the restriction operator:

\[L_K^* F = F|_D \]
Function Extension

Find the extension function $F : \Omega \rightarrow \mathcal{W}$ by solving the minimization problem

$$\inf_{F \in \mathcal{H}_K(\Omega)} \|f - L_K^* F\|_{L^2_\mu(D;\mathcal{W})}^2 + \gamma \|F\|_{\mathcal{H}_K(\Omega)}^2,$$

This problem has a unique solution

$$F_\gamma = (L_K L_K^* + \gamma I)^{-1} L_K f$$
Function Extension: Spectral Algorithm

- Scalar version: Coifman-Lafon (2005)
- Considered as an operator $L^2_\mu(D; \mathcal{W}) \to L^2_\mu(D; \mathcal{W})$, L_K is compact, positive, with orthonormal spectrum $(\lambda_k, \phi_k)_{k=1}^{\infty}$.
- Eigenfunction extension: for $\lambda_k > 0$, we extend $\phi_k : D \to \mathcal{W}$ to $\Phi_k : \Omega \to \mathcal{W}$ by

$$
\Phi_k(x) = \frac{1}{\lambda_k} \int_D K(x, y) \phi_k(y) d\mu(y), \quad \text{for } x \in \Omega.
$$

- To be numerically reliable, one may want to consider only $\lambda_k > \delta$, for some given $\delta > 0$.
Function Extension: Spectral Algorithm

- Compute the eigenvalues and eigenfunctions $\{(\lambda_k, \phi_k)\}$ of $L_K : L^2_\mu(D; \mathcal{W}) \to L^2_\mu(D; \mathcal{W})$.

- Compute the expansion coefficients a_k’s of f in the basis $\{\phi_k\}$: $f = \sum_k a_k \phi_k$

- Compute $F_\delta = \sum_{k, \lambda_k \geq \delta} \frac{\lambda_k}{\lambda_k + \gamma} a_k \Phi_k$, for some $\delta > 0$

- Alternatively, to take care of the case $\lambda_k = 0$, compute directly

$$F_\gamma(x) = \sum_{k=1}^\infty \frac{a_k}{\lambda_k + \gamma} \int_D K(x, y) \phi_k(y) d\mu(y)$$
Assume now that $D = \{x_i\}_{i=1}^m$, with $w_i = f(x_i)$.

An algorithm with real kernel-based flavor:

$$F_\gamma = \arg \min_{F \in \mathcal{H}_K(\Omega)} \frac{1}{m} \sum_{i=1}^m ||F(x_i) - w_i||^2_\mathcal{W} + \gamma||F||^2_{\mathcal{H}_K(\Omega)}.$$

This has a unique solution $F_\gamma = \sum_{i=1}^m K_{x_i} a_i$, with $F_\gamma(x) = \sum_{i=1}^m K(x, x_i) a_i$, where the vectors $a_i \in \mathcal{W}$ satisfy the m linear equations

$$\sum_{j=1}^m K(x_i, x_j) a_j + m \gamma a_i = w_i.$$

Vector-valued Reproducing Kernel Hilbert Spaces – p. 22/41
Compare two algorithms

- **Spectral**: theoretically more general (D can be either discrete or continuous)

- If D is discrete and μ is the uniform distribution, then Least square and Spectral are the same analytically.

- Numerically, Least square is easier to implement and should be expected to be more stable (involves solving well-conditioned systems of linear equations, vs finding eigenvalues/eigenfunctions of the Spectral method).

- The basis functions in Least square are exact (based on the given data points)

- Here we will focus on the Least square method for numerical work
Outline of the Talk

- Brief Review of Scalar-valued RKHS
- Vector-valued RKHS
- Function Extension
- Application: Image Colorization
Joint work with Sung Ha Kang (Georgia Tech) and Triet Le (Yale)

\(\Omega \) is the given grayscale image

\(D \subset \Omega \) is the given region with colors (often very small).

The initial function here is \(f : D \to \mathbb{R}^3 \) (red, green, blue)

Goal: extend the colors to all of \(\Omega \).

Nonlocal kernel

- Simplest scenario: all the colors are independent.

\[K(x, y) = \text{diag}(k_1(x, y), k_2(x, y), k_3(x, y)) \] where each \(k_i \) is a scalar-valued kernel.

- Here we will use scalar-valued kernels of the form

\[k(x, y) = \exp\left(-\frac{|g_r(x) - g_r(y)|^p}{\sigma_1}\right) \exp\left(-\frac{|x - y|^p}{\sigma_2}\right) \]

where \(g_r(x) \) is the patch of radius \(r \) centered at \(x \), of size \((2r + 1) \times (2r + 1)\), with \(g \) denoting the gray level.

- Extend the color function using least square RKHS
Chromaticity and Brightness Model

For sharper resulting images, we consider the CB model of color.

\[f(x) = B(x)C(x), \] where \(B(x) \) is the brightness, and \(C(x) = (r(x), g(x), b(x)) \in S^2 \).

Assumption: we are given the brightness \(B(x) \) on all of \(\Omega \), but \(C(x) \) only on \(D \).

Need: to extend \(C(x) \) to all of \(\Omega \).

Problem: the set of \(S^2 \)-valued functions is not a vector space.
Stereographic Projection

Solution for the S^2-valued Chromaticity function:

Stereographic projection

Since the colors are all nonnegative and for symmetry, we need a **symmetric** stereographic projection that projects from the first quadrant.

- Projection point: $\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$
- Projection plane: $X + Y + Z = 0$
Stereographic Projection

Forward projection from S^2 onto $X + Y + Z = 0$:

$X = \frac{3x-(x+y+z)}{\sqrt{3}(x+y+z+\sqrt{3})}$, $Y = \frac{3y-(x+y+z)}{\sqrt{3}(x+y+z+\sqrt{3})}$, $Z = \frac{3z-(x+y+z)}{\sqrt{3}(x+y+z+\sqrt{3})}$,

Inverse projection from $X + Y + Z = 0$ onto S^2:

$x = \frac{2\sqrt{3}X+1-(X^2+Y^2+Z^2)}{\sqrt{3}(1+X^2+Y^2+Z^2)}$, $y = \frac{2\sqrt{3}Y+1-(X^2+Y^2+Z^2)}{\sqrt{3}(1+X^2+Y^2+Z^2)}$, $z = \frac{2\sqrt{3}Z+1-(X^2+Y^2+Z^2)}{\sqrt{3}(1+X^2+Y^2+Z^2)}$.
Image Colorization Algorithm

- Given: Brightness $B(x)$ on all of Ω and Chromaticity on small subset $D \subset \Omega$
- Project $C(x) : D \rightarrow S^2$ to $C(x) : D \rightarrow \mathbb{R}^2$
- Extend $C(x)$ to $\Omega \rightarrow \mathbb{R}^2$ using the least square algorithm in the RKHS induced by the nonlocal kernel above (kernel constructed using $B(x)$)
- Project the results back onto S^2 to get the extended Chromaticity function from $\Omega \rightarrow S^2$
- Multiply the resulting Chromaticity with the given Brightness to obtain the final answer.
Colorization Algorithm - Complexity

- Involves solving 2 systems of linear equations, each of size $m \times m$, where $m = |D|$
- Evaluation step involves computing kernel matrix of size $m \times M$, where $M = |\Omega|$
- Main computation time is in computing the kernel
- Explicit and unique solution, no iteration required
Figure 2: $p = 1, r = 1, \sigma_1 = 0.5, \sigma_2 = 1$. About 0.5% of color is given.
Figure 3: $p = 1$, $r = 1$, $\sigma_1 = 0.5$, $\sigma_2 = 1$. About 1% of color is given.
Numerical Examples

Figure 4: $p = 1$, $r = 1$, $\sigma_1 = 0.5$, $\sigma_2 = 1$. About 1% of color is given.
Numerical Examples

Figure 5: $p = 1$, $r = 2$, $\sigma_1 = 0.5$, $\sigma_2 = 2$. About 0.96% of color is given.
Figure 6: The colorization result with $r = 0$, $p = 2$, $\sigma_1 = 0.001$, and $\sigma_2 = 10$.
Figure 7: Chromaticity and Brightness model via Stereographic Projection vs. RGB channel: $\rho = 1$, $r = 2$, $\sigma_1 = 0.5$, and $\sigma_2 = 10$
Numerical Examples

Figure 8: $p = 2$, $r = 2$, $\sigma_1 = 0.1$, and $\sigma_2 = 10$
Figure 9: The colorization result with $r = 10$, $p = 1.5$, $\sigma_1 = 0.4$, $\sigma_2 = 10$. Less than 2% of color is given.
Conclusion

- Operator-valued positive definite kernels and their induced vector-valued RKHS
- Use of RKHS for the problem of function extension (vector-valued)
- An application in Image Colorization
Acknowledgement

- Institute for Pure and Applied Mathematics (IPAM)
- German Research Foundation (DFG)
- Hausdorff Institute for Mathematics (HIM) in Bonn (Junior Program in Analysis, September-October 2008)