Experimental Designs for Estimating Variance Components

Alexander N. Donev and Sergio Loeza-Serrano

School of Mathematics
University of Manchester

E-mail for correspondence: a.n.donev@manchester.ac.uk

August 2011
Contents

- Motivating example
- Background
- V-class of optimality criteria
- Examples
- Discussion and further work
Example. Bioassay validation

Figure: Plates for fluorescence/ luminescence-based immuno-assays and binding assays (white, black and clear)
Example. Bioassay validation

Aim
- Set up the main study
- Estimate variance components
- Identify best conditions
- Power calculations
- Tested compounds not important!
Example. Bioassay validation

Aim

▶ Set up the main study
▶ Estimate variance components
▶ Identify best conditions
▶ Power calculations
▶ Tested compounds not important!

▶ How many plates?
▶ How many occasions?
▶ What compounds to test?
Background

- Herzberg & Cox (1969): less than 3% of the approximately 800 cited articles were classified as dealing with designs for variance components estimation
- Since then - no much change!
Background

- Herzberg & Cox (1969): less than 3% of the approximately 800 cited articles were classified as dealing with designs for variance components estimation
- Since then - no much change!

- Useful reviews:
 Khuri & Sahai (1985)
 Khuri (2001)
Background

- Herzberg & Cox (1969): less than 3% of the approximately 800 cited articles were classified as dealing with designs for variance components estimation
- Since then - no much change!

- Useful reviews:
 Khuri & Sahai (1985)
 Khuri (2001)

- Common features of past research:
 - devoted to specific problems
 - fragmented

- Recognized: the optimum design depends on the unknown true values of the variance components!
Some references

- Staggered nested designs - Bainbridge, T. R. (1965)
Linear mixed effect model

Model

\[y = X\beta + Z\gamma + \epsilon, \]

- **y** - vector of \(N \) observations
- **\epsilon** - vector of experimental errors
- **\beta** & **\gamma** - vectors of \(p \) fixed and \(r \) random effects
- **X** & **Z** - the design matrices for the fixed and the random effects
- Combining **Z\gamma + \epsilon**

\[Z\gamma = \sum_{i=0}^{r} Z_i \gamma_i \]

where

\[Z_0 = I_N \quad \gamma_0 = \epsilon \]
Model assumptions

\[E(y) = X\beta, \quad E(\epsilon) = 0, \quad E(\gamma_i) = 0, \quad \text{var}(\epsilon) = \sigma_\epsilon^2 I_N \]

\[
\text{var}(\gamma) = \begin{bmatrix}
\sigma_1^2 I_{q_1} & & \\
& \sigma_2^2 I_{q_2} & \\
& & \ddots \\
& & & \sigma_r^2 I_{q_r}
\end{bmatrix}
\text{ is a block diagonal matrix}
\]

Also

\[\text{var}(y) = V = \sum_{i=0}^{r} \sigma_i^2 Z_i Z_i^T. \]
Maximum Likelihood Estimation

► Model

\[y \sim N_N(X\beta, V) \]

► Likelihood

\[L = L(\beta, V|y) = \exp \left(-\frac{1}{2}(y - X\beta)^T V^{-1}(y - X\beta) \right) \]

\[(2\pi)^{\frac{1}{2}N} |V|^{\frac{1}{2}} \]

► Log-likelihood

\[l = \log(L) \]
Maximum Likelihood Estimation

- Fisher information matrix

\[
M \begin{bmatrix} \beta \\ \sigma^2 \end{bmatrix} = \begin{bmatrix} X^T V^{-1} X & 0 \\ 0 & \frac{1}{2} \text{tr} \left(V^{-1} Z_i Z_i^T V^{-1} Z_j Z_j^T \right) \end{bmatrix}_{i,j = 0, \ldots, r}
\]
Maximum Likelihood Estimation

- Fisher information matrix

\[
M \begin{bmatrix}
\beta \\
\sigma^2
\end{bmatrix} = \begin{bmatrix}
X^T V^{-1} X & 0 \\
0 & \frac{1}{2} \text{tr} \left(V^{-1} Z_i Z_i^T V^{-1} Z_j Z_j^T \right)
\end{bmatrix}
\]

- Optimizing designs for \(\beta \) and for \(\sigma^2 \) can be done independently

- Optimality of designs for \(\beta \) does not depend on \(\beta \)

- Optimality of designs for \(\sigma^2 \) does depend on \(\sigma^2 \)
Maximum Likelihood Estimation

- Fisher information matrix

\[M \left[\begin{array}{c} \beta \\ \sigma^2 \end{array} \right] = \begin{bmatrix} X^T V^{-1} X & 0 \\ 0 & \frac{1}{2} \text{tr} \left(V^{-1} Z_i Z_i^T V^{-1} Z_j Z_j^T \right) \end{bmatrix} \quad i, j = 0, \ldots, r. \]

- Optimizing designs for \(\beta \) and for \(\sigma^2 \) can be done independently

- Optimality of designs for \(\beta \) does not depend on \(\beta \)
Maximum Likelihood Estimation

- Fisher information matrix

\[
M \begin{bmatrix} \beta \\ \sigma^2 \end{bmatrix} = \begin{bmatrix} X^T V^{-1} X & 0 \\ 0 & \frac{1}{2} \text{tr} \left(V^{-1} Z_i Z_i^T V^{-1} Z_j Z_j^T \right) \end{bmatrix}_{i, j = 0, \ldots, r}.
\]

- Optimizing designs for \(\beta \) and for \(\sigma^2 \) can be done independently.
- Optimality of designs for \(\beta \) does not depend on \(\beta \).
- Optimality of designs for \(\sigma^2 \) does depend on \(\sigma^2 = (\sigma_\epsilon^2, \sigma_1^2, \sigma_2^2, \ldots, \sigma_r^2) \).
Maximum Likelihood Estimation

- Fisher information matrix

\[
M \begin{bmatrix} \beta \\ \sigma^2 \end{bmatrix} = \begin{bmatrix} X^T V^{-1} X & 0 \\ 0 & \frac{1}{2} \text{tr} \left(V^{-1} Z_i Z_i^T V^{-1} Z_j Z_j^T \right) \end{bmatrix} \quad i, j = 0, \ldots, r.
\]

- Optimizing designs for \(\beta \) and for \(\sigma^2 \) can be done independently.

- Optimality of designs for \(\beta \) does not depend on \(\beta \).

- Optimality of designs for \(\sigma^2 \) does depend on \(\sigma^2 = (\sigma^2_\epsilon, \sigma^2_1, \sigma^2_2, \ldots, \sigma^2_r) \).

- Hence, the design problem for \(\sigma^2 \) is similar to that for nonlinear models!
V class of criteria of design optimality

- Let

\[M(\sigma^2) = \frac{1}{2} \text{tr} \left(V^{-1} Z_i Z_i^T V^{-1} Z_j Z_j^T \right) \quad i, j = 0, \ldots, r \]

- Local \(D \)-optimality requires

\[D_V = \min \left| M^{-1}(\sigma^2) \right|_{\sigma^2 = \sigma_0^2} \]

- Bayesian \(D \)-optimality requires

\[D_V = \min \left| M^{-1}(\sigma^2) \right|_{\sigma^2 \in \Sigma} \]
V class of criteria of design optimality

- Local A_V-optimality requires
 \[
 \min \ tr \ M^{-1}(\sigma^2) \bigg|_{\sigma^2=\sigma_0^2}
 \]

- Bayesian A_V-optimality requires
 \[
 \min \ tr \ M^{-1}(\sigma^2) \bigg|_{\sigma^2 \in \Sigma}
 \]
Similarity

- Design optimality for σ^2 does not depend on the total variability but only on the proportions of the variance components.
Similarity

- Design optimality for σ^2 does not depend on the total variability but only on the proportions of the variance components.
- Similarity with mixtures experiments where the response depends only on the proportion of the mixture components.
Similarity

- Design optimality for σ^2 does not depend on the total variability but only on the proportions of the variance components.
- Similarity with mixtures experiments where the response depends only on the proportion of the mixture components.
V class of criteria of design optimality

c_V-optimality:

Interest in functions of the model parameters $g(\hat{\sigma}^2)$.
Example 1. Two-Way Crossed Model
(No Interaction)

The model is

\[y_{ijk} = \mu + \alpha_i + \beta_j + e_{ijk} \]
\[= \mu 1 + Z_1 \alpha + Z_2 \beta + Z_0 \epsilon \]

\(i = 1 \ldots a, \quad j = 1 \ldots b \)

\[k = \begin{cases}
1 \ldots n_{ij} & \text{Unbalanced} \\
1 \ldots n & \text{Balanced}
\end{cases} \]

\[N = \begin{cases}
\sum_i \sum_j n_{ij} & \text{Unbalanced} \\
abn & \text{Balanced}
\end{cases} \]
Example 1. Two-Way Crossed Model
(No Interaction)

Information matrix

\[
M \begin{bmatrix}
\hat{\sigma}_\varepsilon^2 \\
\hat{\sigma}_\alpha^2 \\
\hat{\sigma}_\beta^2
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
t_{\varepsilon\varepsilon} & t_{\alpha\alpha}/bn & t_{\beta\beta}/n \\
t_{\alpha\alpha} & abn^2/\theta_4^2 & t_{\beta\beta}
\end{bmatrix},
\]

where

\[
t_{\alpha\alpha} = b^2 n^2 \left(\frac{a - 1}{\theta_{11}^2} + \frac{1}{\theta_4^2} \right) \quad t_{\beta\beta} = a^2 n^2 \left(\frac{b - 1}{\theta_1^2} + \frac{1}{\theta_4^2} \right)
\]

\[
t_{\varepsilon\varepsilon} = \frac{abn - a - b + 1}{\theta_0^2} + \frac{a - 1}{\theta_{11}^2} + \frac{b - 1}{\theta_{12}^2} + \frac{1}{\theta_4^2}
\]

\[
\theta_0 = \sigma_\varepsilon^2 \quad \theta_{11} = \sigma_\varepsilon^2 + bn\sigma_\alpha^2
\]

\[
\theta_{12} = \sigma_\varepsilon^2 + an\sigma_\beta^2 \quad \theta_4 = \sigma_\varepsilon^2 + bn\sigma_\alpha^2 + an\sigma_\beta^2
\]
Example 2. Two-Way Nested Balanced Model

The model

\[y_{ijk} = \mu + \alpha_i + \beta_{ij} + e_{ijk} \]
\[= \mu 1 + Z_1 \alpha + Z_2 \beta + Z_0 \epsilon \]

\(i = 1 \ldots a, \quad j = 1 \ldots b\)

\[k = \begin{cases} 1 \ldots n_{ij} \\ 1 \ldots n \end{cases} \quad N = \begin{cases} \sum_i \sum_j n_{ij} & \text{Unbalanced} \\ a \sum_{ab} n_{ij} & \text{Balanced} \end{cases} \]
Example 2. Two-Way Nested Balanced Model

Information matrix

\[
\mathbf{M} \begin{bmatrix}
\hat{\sigma}_\varepsilon^2 \\
\hat{\sigma}_\alpha^2 \\
\hat{\sigma}_\beta^2
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
t_{\varepsilon\varepsilon} & t_{\alpha\alpha}/bn & t_{\beta\beta}/n \\
t_{\alpha\alpha} & t_{\alpha\alpha}/b \\
t_{\beta\beta}
\end{bmatrix},
\]

where

\[
t_{\alpha\alpha} = \frac{ab^2n^2}{\theta_{11}^2} \\
t_{\beta\beta} = an^2 \left(\frac{b - 1}{\theta_1^2} + \frac{1}{\theta_{11}^2} \right) \\
t_{\varepsilon\varepsilon} = \frac{ab(n - 1)}{\theta_0^2} + \frac{a(b - 1)}{\theta_1^2} + \frac{a}{\theta_{11}^2} \\
\theta_0 = \sigma_\varepsilon^2 \\
\theta_{11} = \sigma_\varepsilon^2 + n\sigma_\beta^2 + bn\sigma_\alpha^2 \\
\theta_1 = \sigma_\varepsilon^2 + n\sigma_\beta^2
\]
Example 3. Functions of variance components: Ratios

In some applications, the interest is in functions of the variance components.

Define the ratios as

\[\eta_i = \frac{\sigma_i^2}{\sigma^2_\epsilon}, \quad i = \alpha, \beta. \]

Then,

\[\eta_\alpha = \frac{\sigma^2_\alpha}{\sigma^2_\epsilon}, \quad \eta_\beta = \frac{\sigma^2_\beta}{\sigma^2_\epsilon}. \]
Example 1(cont). Bioassay as a Two-Way Crossed Model

A bioassay is performed over different occasions \Rightarrow days

The plates wells (exp. units) are measured in different sets of equipment \Rightarrow readers

The experiment consists of taking measurements on n plates, using b different readers in a different days.

The model is

$$ y = \mu 1 + Z_1 \alpha + Z_2 \beta + Z_0 \epsilon $$

$\mu \Rightarrow$ overall mean \hspace{1cm} $\alpha \Rightarrow$ day effects

$\epsilon \Rightarrow$ random error \hspace{1cm} $\beta \Rightarrow$ reader effects
Example 1 (cont). Bioassay as a Two-Way Crossed Model

For the locally optimum designs, the space

\[\sigma^2 = (\sigma^2_\epsilon, \sigma^2_\alpha, \sigma^2_\beta) \]

\[\sigma^2_r = [0, 1] \quad r = \epsilon, \alpha, \beta \]

is mapped in a fine grid.

For one design and for each of 50000 \(\sigma^2 \) triplets,

- the information matrix is computed
- the design optimality criterion value is calculated

The criterion values are compared across the candidate designs, and the best design is chosen for each \(\sigma^2 \).
Example 1(cont). Bioassay as a Two-Way Crossed Model

Consider a balanced design.

For $N = 24$, the triplet (a, b, n) can generate 9 candidate designs

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
Example 1 (cont.). Bioassay as a Two-Way Crossed Model

For individual variance components:

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
Example 1 (cont). Bioassay as a Two-Way Crossed Model

Case 1: No specific information about σ^2 is available.

<table>
<thead>
<tr>
<th>Design</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
Example 1 (cont). Bioassay as a Two-Way Crossed Model

Case 2: $\sigma^2_\alpha > \sigma^2_\beta > \sigma^2_\epsilon$

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
The bioassay is performed over different occasions \(\Rightarrow \) days.

Different plates are used in every experimental run.

This creates a nesting structure. Plates nested in Days.

The experiment consists of taking \(n \) measurements on \(b \) different plates in \(a \) different days.

The model is

\[
y = \mu 1 + Z_1 \alpha + Z_2 \beta + Z_0 \epsilon
\]

\(\mu \) \(\Rightarrow \) overall mean \(\alpha \) \(\Rightarrow \) day effects

\(\epsilon \) \(\Rightarrow \) random error \(\beta \) \(\Rightarrow \) plate effects in Days
Example 2 (cont). Bioassay as a Two-Way Nested Model

For individual variance components
Example 2 (cont). Bioassay as a Two-Way Nested Model

Case 1: No specific information about σ^2 is available.
Example 2 (cont). Bioassay as a Two-Way Nested Model

Case 2: $\sigma^2_\alpha > \sigma^2_\beta > \sigma^2_\epsilon$
Example 3a (cont). Variance Components Ratios in the Two-Way Crossed Model

For ratios of variances $\eta_i = \frac{\sigma_i^2}{\sigma^2_\epsilon} \quad i = 1 \ldots$
Example 3b (cont). Variance Components Ratios in the Two-Way Nested Model

For ratios of variances $\eta_i = \frac{\sigma_i^2}{\sigma^2_\epsilon}$ \(i = 1\ldots\)
Conclusions

- Methodology ready to *add* to the Optimum Design Theory
- Easy way to identify the best design
- Easy to extended to different models
- Easy interpretation
Further work

- Easy to extend for optimality of both fixed effects and variance components
- ...more types of Split-Plot designs
- ...many possible functions of the variance components
- ...variance models
- ...nonlinear model for the fixed effect
- ...