Objective calibration of the Bayesian CRM

Ken Cheung
Department of Biostatistics, Columbia University
The other King’s College
Phase I clinical trials

• Safety endpoint: Dose-limiting toxicity (DLT)

• Dose finding objective:
 – Consider a set of K doses with labels d_1, d_2, \ldots, d_K
 – Estimate the maximum tolerated dose (MTD):
 \[
 \arg \min_k \left| \pi(d_k) - p \right|
 \]
 where $\pi(x)$ is the probability of DLT at dose x and p is a pre-specified target, i.e., percentile estimation

• Sequential dose decisions
CRM

- **Continual Reassessment Method:** treat the next patient at dose level
 \[\arg \min_k \ | \ F(d_k, b) - p \ | \]
 where \(F(d_k, b) \) is an estimate of \(\pi(d_k) \)
- **Intuitive and “greedy”**
- Borrowing strength between doses
- **Flexible:** A coherent approach to contingencies via the model. What would the 3+3 rule do if \(1/3 + 0/3 + 1/1 \ldots ? \)

- **Assumption:** The model is properly calibrated.
What may happen when the CRM is poorly calibrated

- Model violates consistency conditions under this true state of nature (Shen & O’Quigley, 1996)
- **Practical problem:** Specifying a (CRM) model can be a complex process … even for statisticians

Target DLT = 20%; MTD ν = 5
Outline

• Components of a Bayesian CRM model
 – Dose-toxicity function
 – Initial guesses of DLT rates (“Skeleton”)
 – Prior distribution of model parameter

• Example: A bortezomib trial

• Discussion
CRM model

Three steps to specify a CRM model:
1. Dose-toxicity function $F(x, \beta) = P(\text{DLT at dose } x)$
2. Choose a prior distribution $G(\beta)$ of β.
3. Evaluate the dose labels $\{d_1, d_2, \ldots, d_K\}$ for the K test doses via back ward substitution:
 - Let p_{i0} denote initial guess of DLT rate for dose i.
 The dose labels d_i are obtained such that
 $$F\{d_i, E_G(\beta)\} = p_{i0}$$
 where $E_G(\beta)$ is the prior mean of β.
CRM model

Thus, the model parameters are $(F, G, p_{10}, p_{20}, \ldots, p_{K0})$

- Dose-toxicity function, e.g., empiric $F(x,\beta) = x^\beta$
- Prior distribution, e.g., $\beta \sim \text{Exp}(1)$
- Initial guesses of DLT rates “Skeleton”
CRM model: Literature

- **Chevret (1993):** For $G = \text{Exp}(1)$ and a given set of $p_{10}, p_{20}, \ldots, p_{K0}$
 - Logistic F with $a_0 = 3$ is superior to empiric
- **Lee and Cheung (2009):** For any fixed F and G
 - we can choose $p_{10}, p_{20}, \ldots, p_{K0}$ to match operating characteristics
- **Lee and Cheung (2011):** For any fixed F and $p_{10}, p_{20}, \ldots, p_{K0}$
 - A least informative prior is adequate
Choice of p_{0k}’s
Who should choose p_{0k}’s?

- **Ideal** – clinicians choose the initial guesses for all test doses based on their knowledge/experience
- **Reality** – rarely done; too difficult
- **Goal 1**: Generate the initial guesses p_{0k}’s with minimal inputs from clinicians by reducing the dimensionality of the specification problem:
 - Reduce the initial guesses (K numbers) into two *clinically* interpretable parameters.
How to choose p_{0_k}’s?

- To get p_{0_k}’s we need:
 - The prior MTD, $v_0 = \text{Starting dose level}
 - An acceptable range of DLT rate $\theta \pm \delta$, where θ is the target DLT rate. E.g., 0.25 ± 0.05
 - Dose-toxicity function F
 - Number of test doses K
 - Target DLT rate θ …
How to choose p_{0k}’s?

- For any given δ, a skeleton can be obtained using the function `getprior` in the R package `dfcrm`.

```r
> p0 <- getprior(0.05,0.25,3,5,model="logistic")
> round(p0,digits=2)
[1] 0.09 0.16 0.25 0.36 0.46
```
Interpretation of δ

- **Theoretical basis** of p_{0k}'s by the function `getprior`: The CRM converges to the acceptable range $\theta \pm \delta$ on the probability scale.
- a.k.a. indifference interval (Cheung and Chappell, 2002, *Biometrics*)
How to choose δ?

- **Goal 2:** Choose δ empirically (if the clinicians don’t call it)
 - Asymptotically, a small δ has a small bias.
 - With small-moderate sample size, a small δ has a large variance of selected MTD.
 - Use simulations to obtain a δ that yields competitive operating characteristics over a wide range of scenarios.
Step 1 – Iterate δ

Specify a CRM model:

- Logistic function (with a fixed intercept):
 \[
 \text{logit} \{ F(x, \beta) \} = 3 + \exp(\beta) x
 \]

- Normal prior $\beta \sim N(0, 1.34)$

- Target rate $\theta = 0.25$

- $K = 5$ dose levels

- Prior MTD $\nu_0 = 3$ (starting dose)

- **Iterate δ from 0.01 to 0.24**
Step 2 – Simulate

For each δ,
Run CRM under the plateau scenarios (calibration set): Record average probability of correctly selecting (PCS) the MTD

<table>
<thead>
<tr>
<th>Scene</th>
<th>True p_1</th>
<th>True p_2</th>
<th>True p_3</th>
<th>True p_4</th>
<th>True p_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>2</td>
<td>0.14</td>
<td>0.25</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
<td>0.14</td>
<td>0.25</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.25</td>
<td>0.40</td>
</tr>
<tr>
<td>5</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Step 3 – Compare PCS (ave.)

Choose δ with the highest average PCS

Scene 1

- N = 20
- N = 30
- N = 40

Scene 3

- N = 20
- N = 30
- N = 40

Scene 5

Average PCS
Choice of δ: results

- $N \approx 20$–40
- For logistic with fixed intercept 3,
 - For $\theta = 0.10$, the optimal δ ranges 0.02–0.04
 - For $\theta = 0.20$, the optimal δ ranges 0.04–0.08
 - For $\theta = 0.25$, the optimal δ ranges 0.04–0.08
 - For $\theta = 0.33$, the optimal δ ranges 0.04–0.10
- Optimal δ is tabulated in Cheung (2011, *DFCRM*)
Choice of prior $G(\beta)$
Problem reduction

- Focus on the logistic model with the following parametrization:
 - **Logistic:** \(\text{logit} \{ F(x, \beta) \} = a_0 + \exp(\beta) x \)
 and a normal prior \(\beta \sim N(0, \sigma^2) \)
- \(p_{01}, \ldots, p_{0K} \) are chosen and fixed.
- The CRM model is then completed by specifying the prior standard deviation \(\sigma \).
Simulation to get σ

- 1st try: Use the same simulation approach as before:
 1. *Iterate σ*: Fix all CRM parameters but σ
 2. *Simulate*: Run CRM under the plateau scenarios
 3. *Compare PCS*: Choose σ with the highest average PCS
Simulation to get σ: Results
Simulation to get σ: Problem 1

- Average PCS is quite flat once σ is “large” enough
 - difference less than 3 percentage points
 - The average PCS criterion does not seem sensitive and discriminatory
Alternative criterion

Standard deviation of PCS

![Graph showing standard deviation of PCS and average PCS vs. standard deviation of PCS with a 6-fold increase indicated.](image)
Simulation to get σ: Problem 2

- Range of good σ is dependent on the other design parameters, and is not bounded
 - Good range of σ for logistic: 0.25—0.45
 - Good range of σ for empiric: 0.75—1.50
 - A general exhaustive search is infeasible
Detour: Least informative prior

- A large σ is **not** vague – on the MTD scale
- Using the above specified logistic model:

<table>
<thead>
<tr>
<th>σ</th>
<th>Prior probability $\nu = \text{dose level}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.09</td>
</tr>
<tr>
<td>0.33</td>
<td>0.21</td>
</tr>
<tr>
<td>1.16</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Detour: Least informative prior

• **Definition:** A least informative σ^{LI} for the normal prior $G(\beta)$ is a value of σ that gives a prior distribution of ν “closest” to the uniform distribution.

• **Observation:** For the logistic model, simulations show that the least informative prior performs well.
Detour: Least informative prior

\[\theta = 0.25 \]
\[K = 5 \]
\[\nu = 3 \]
\[N = 20 \]
\[\delta = 0.07 \]
Simulation to get σ: Aided by σ^{LI}

- A general search in the neighborhood of least informative prior
 - Evaluate least informative σ^{LI} (binary search)
 - Iterate σ in the neighborhood of σ^{LI}, e.g., from $0.8 \sigma^{LI}$ to $1.5 \sigma^{LI}$.
 - Choose σ that minimizes standard deviation of PCS over the plateau scenarios (calibration set)
Example: A bortezomib trial

- Trial design: (TITE-)CRM with
 - $\theta = 0.25$, $K = 5$, $\nu = 3$
 - $p_{01} = .05$, $p_{02} = .12$, $p_{03} = .25$, $p_{04} = .40$, $p_{05} = .55$
 - Empiric $F(d, \beta) = d^{\exp(\beta)}$
 - $\beta \sim N(0, 1.34)$
Example: A bortezomib trial

- These design parameters were chosen by trial-and-error aided by simulations under the validation scenarios:

<table>
<thead>
<tr>
<th>Scene</th>
<th>True p_1</th>
<th>True p_2</th>
<th>True p_3</th>
<th>True p_4</th>
<th>True p_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.40</td>
<td>0.45</td>
<td>0.55</td>
<td>0.60</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.25</td>
<td>0.40</td>
<td>0.45</td>
<td>0.55</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.05</td>
<td>0.25</td>
<td>0.45</td>
<td>0.55</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>0.25</td>
<td>0.45</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>0.12</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Example: A bortezomib trial

<table>
<thead>
<tr>
<th></th>
<th>Study model $\sigma = 1.16$</th>
<th>Logistic $\delta = 0.07$, $\sigma = 1.16$</th>
<th>Logistic $\delta = 0.07$, $\sigma = 0.35$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS - 1</td>
<td>0.67</td>
<td>0.69</td>
<td>0.62</td>
</tr>
<tr>
<td>PCS - 2</td>
<td>0.58</td>
<td>0.57</td>
<td>0.60</td>
</tr>
<tr>
<td>PCS - 3</td>
<td>0.68</td>
<td>0.64</td>
<td>0.69</td>
</tr>
<tr>
<td>PCS - 4</td>
<td>0.64</td>
<td>0.61</td>
<td>0.66</td>
</tr>
<tr>
<td>PCS - 5</td>
<td>0.66</td>
<td>0.70</td>
<td>0.61</td>
</tr>
<tr>
<td>PCS (ave)</td>
<td>0.65</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>PCS (std)</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Discussion

• Calibration
 – With respect to objective criteria: indifference interval and least informative prior
 – Aided by objective operating characteristics via simulation
• Simplify the model calibration process
 – Get a reasonable δ: available from existing tables
 – Get the least informative σ^{LI}: 5-line code in R
 – (Optional) Iterate in the neighborhood of σ^{LI}
• NOT to improve upon trial-and-error in terms of accuracy, but to provide competitive operating characteristics with an automated model specification; e.g., bortezomib trial
Resources

- `dfcrm` package in R
 - http://www.r-project.org
- Lee and Cheung (2009, *Clinical Trials*)