Optimizing the Bolus and Concentration of a Drug Administered by Continuous Infusion (to appear in *Biometrics*)

Peter F. Thall
Biostatistics Department
M.D. Anderson Cancer Center

Design of Experiments in Healthcare
Isaac Newton Institute for Mathematical Sciences
Cambridge, England
August 15-19, 2011
Collaborators

Hoang Nguyen, PhD:
Programming and model development

Aniko Szabo, PhD:
Problem formulation, model development, notation & writing

Kate Amlie-Lefond, MD and Sam Zaidat, MD:
Medical motivation, prior, and utilities
Acute ischemic stroke (AIS) is a major cause of disability and death in adults. AIS is caused by a clot in a brain artery that blocks blood flow.

Intra-arterial (IA) Fibrinolytic Infusion is a new therapeutic modality for AIS: A thrombolytic agent to dissolve the clot is delivered via 2 telescoping catheters, inserted into the femoral artery. One catheter is supportive, with a microcatheter inside it.

X-ray fluoroscopic guidance is used to move the catheters through the arteries to the clot in the brain.

The agent is infused via the microcatheter.
Motivating Trial: IA tPA for Acute Ischemic Stroke

1. If treatment can be started within 3 to 6 hours, infuse the thrombolytic agent \textit{tPA (tissue plasminogen activator)} via the arterial micro-catheter to the site of the clot in the brain.

2. Give an initial bolus (10\% or 20\%) of the planned maximum amount of \textit{tPA}.

3. If the initial bolus does not dissolve the clot:

 → Continuously infuse (ci) the remaining \textit{tPA} for up to 120 minutes.
 → Image the clot at 15 minute intervals.
 → Stop the ci early if and when the clot is dissolved.
Outcomes

Response $Y_E = $ Time to dissolve the clot, recorded in 15-minute intervals up to the maximum infusion time of 120 minutes (Faster is much better!!)

Toxicity $Y_T = $ Symptomatic Intra-Cerebral Hemorrhage (SICH) is observed by imaging at 48 hours (much later than response)

SICH increases mortality by 50%, and may cause permanent brain damage

$\rightarrow Y_E$ is a time-to-event variable, interval-censored up to 120 minutes and right-censored at 120 minutes

$\rightarrow Y_T$ is a binary variable that depends on Y_E

The Central Problem: More tPA is more likely to (1) dissolve the clot and (2) cause SICH
Treatment and Efficacy Evaluation Schedule

Bolus

Times of infusion and evaluation (minutes)

\[Y_E = \text{Time to dissolve the clot is interval censored up to 120 minutes and administratively censored thereafter} \]

Example: If the clot is not dissolved by 30 minutes but dissolved by 45 minutes, it is only known that \(30 < Y_E \leq 45\), and infusion is stopped at the 45 minute evaluation. If \(Y_E > 120\), then \(Y_E^o = 120\) is observed.
Treatment Parameters

- c = concentration of tPA (0.2, 0.3, 0.4, or 0.5 mg/kg)
- q = proportion of maximum total planned tPA given as an initial bolus (0.1 or 0.2)

$4 \times 2 = 8$ possible (c, q) treatment combinations

<table>
<thead>
<tr>
<th>Treatment parameters (q, c)</th>
<th>(.10, .20)</th>
<th>(.10, .30)</th>
<th>(.10, .40)</th>
<th>(.10, .50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(.20, .20)</td>
<td>(.20, .30)</td>
<td>(.20, .40)</td>
<td>(.20, .50)</td>
<td></td>
</tr>
</tbody>
</table>

Outcome data (Y_E, Y_T)

(Time to Dissolve the Clot up to 120 Minutes, SICH or Not)
Necessary Properties of the Probability Model

Efficacy:

The distribution of Y_E must be a function of (c, q) that accounts for both
1) $\Pr(Y_E = 0) > 0$, due to possible success with the bolus
2) the rate of Y_E during the continuous infusion

Toxicity (SICH):

\[
\pi_T(Y_E, c, q) = \Pr(Y_T = 1 \mid Y_E, c, q) = \Pr(\text{SICH} \mid Y_E, c, q)
\]

must be a function of both Y_E and (c, q)
Probability Model for $Y_E =$ Time to Dissolve the Clot

$p_0(c,q) = \Pr(\text{bolus dissolves the clot instantly})$

$$= \Pr(Y_E = 0) = 1 - \exp\left(-\alpha_0 c^{\alpha_1} q^{\alpha_2}\right)$$

$\lambda(s,c,q) =$ Rate function for $Y_E > 0$

$$= \alpha_3 + \frac{\alpha_4 \alpha_5 \{d(s,c^{\alpha_1},q^{\alpha_2})\}^{\alpha_5-1}}{1 + \alpha_4 \{d(s,c^{\alpha_1},q^{\alpha_2})\}^{\alpha_5}}$$

for $s > 0$.

where the effective delivered dose by time s is

$$d(s,c^{\alpha_1},q^{\alpha_2}) = c^{\alpha_1}\{q^{\alpha_2} + (1 - q^{\alpha_2})s\}$$
Probability Model for $Y_E = \text{Time to Dissolve the Clot}$

Denote the cumulative rate function

$$\Lambda(s, c, q, \alpha) = \int_0^s \lambda(y, c, q, \alpha)\,dy.$$

The pdf of Y_E is the discrete-continuous mixture

$$f_E(y, c, q, \alpha) = p_0(c, q, \alpha)1(y = 0) +$$

$$\{1 - p_0(c, q, \alpha)\} \lambda(y, c, q, \alpha) \, e^{-\Lambda(y, c, q, \alpha)}1(y > 0)$$

and the cdf is

$$F_E(y, c, q, \alpha) = 1 - \{1 - p_0(c, q, \alpha)\} \, e^{-\Lambda(y, c, q, \alpha)}$$
Possible Forms of the Curve for $p_0(c, q) = \Pr(\text{Dissolve the Clot Instantly with the Bolus})$
Possible Shapes for Rate Function $\lambda(s,c,q)$ of Time to Dissolve the Clot by Continuous Infusion if $Y_E > 0$

$s = \text{standardized time} = \text{minutes} / 120$
The risk of SICH depends on c, q, and Y_E since infusion is stopped at Y_E or, if the clot is not dissolved by the tPA, at 120 minutes.

\[
\pi_T(Y_E, c, q, \beta) = \Pr(Y_T = 1 \mid Y_E, c, q, \beta) \\
= 1 - \exp\left[-\{\beta_0 + \beta_2 c^{\beta_1} q + \beta_3 c^{\beta_1} (1 - q)(Y_E \land 1) + \beta_4 1(Y_E > 1)\}\right].
\]

- Baseline SICH rate
- Effect of the bolus
- Effect of the continuously infused tPA
- Effect of failure to dissolve the clot within 120 minutes
Possible Shapes for $\pi_T(c,q) = \Pr(\text{SICH} \mid c,q)$
Important Special Case: If No Bolus is Given

$q = 0$, so $p_0(c,q) = 0$, the rate function simplifies to

$$\lambda(s, c, 0, \alpha) = \alpha_3 + \frac{\alpha_4 \alpha_5 (c^{\alpha_1} s)^{\alpha_5-1}}{1 + \alpha_4 (c^{\alpha_1} s)^{\alpha_5}}$$

for $s > 0$.

the cumulate rate becomes

$$\Lambda(s, c, 0, \alpha) = \alpha_3 s + c^{-\alpha_1} \log\{1 + \alpha_4 (c^{\alpha_1} s)^{\alpha_5}\}$$

for $s > 0$

and the SICH probability linear term loses one term:

$$\pi_T(Y_E, c, q, \beta) = 1 - \exp\left[-\{\beta_0 + \beta_2 c^{\alpha_1} q + \beta_3 c^{\beta_1}(1 - q)(Y_E \land 1) + \beta_4 1(Y_E > 1)\}\right]$$
Interval Censoring of Y_E

Observation of Y_E at 15-minute intervals \Rightarrow

For observation interval $I_E = \left(y_E^a, y_E^b \right)$ and $y_T = 0,1$

the *joint distribution* of Y_E and Y_T is

$$
\pi_{E,T}(I_E, y_T | c, q, \theta) = \Pr(y_E^a < Y_E \leq y_E^b, Y_T = y_T | c, q, \theta)
$$

Dissolve the clot by continuous infusion between y_E^a and y_E^b

SICH occurs ($y_T = 1$) or does not ($y_T = 0$)
Likelihood Function

For $Y_T = 0$ or 1,

$$
\mathcal{L}(Y|c, q, \theta) = \left[p_0(c, q, \alpha) \pi_T(0, c, q, \beta)^{Y_T} \{1 - \pi_T(0, c, q, \beta)\}^{1-Y_T} \right]^{1(Y_E=0)}
\times \prod_{m=1}^{M} \left[\pi_{E,T}(I_{E,m}, 1 | c, q, \theta)^{Y_T} \pi_{E,T}(I_{E,m}, 0 | c, q, \theta)^{1-Y_T} \right]^{1(Y_E \in I_{E,m})}
\times \left[\{1 - F_E(1| c, q, \alpha)\} \pi_T(1, c, q, \beta)^{Y_T} \{1 - \pi_T(1, c, q, \beta)\}^{1-Y_T} \right]^{1(Y_E > 1)}
$$

- Dissolve the clot during some 15-minute interval
- Fail to Dissolve the clot within 120 minutes

Dissolve the clot with the bolus at $Y_E = 0$
Utilities of the Possible Bivariate Outcomes:
(I Elicited these from Sam Zaidat & Kate Amlie-Lefond)

<table>
<thead>
<tr>
<th>Minutes</th>
<th>0</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
<th>91-105</th>
<th>106-120</th>
<th>> 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Time</td>
<td>0</td>
<td>0-.125</td>
<td>.126-.250</td>
<td>.256-.375</td>
<td>.376-.500</td>
<td>.501-.625</td>
<td>.626-.750</td>
<td>.756-.875</td>
<td>.876-1.000</td>
<td>> 1</td>
</tr>
</tbody>
</table>
Utilities of the Possible Bivariate Outcomes: (I Elicited these from Sam Zaidat & Kate Amlie-Lefond)

Time Required to Dissolve the Blood Clot

<table>
<thead>
<tr>
<th>Minutes</th>
<th>0</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
<th>91-105</th>
<th>106-120</th>
<th>> 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Time</td>
<td>0</td>
<td>0-.125</td>
<td>.126-.250</td>
<td>.256-.375</td>
<td>.376-.500</td>
<td>.501-.625</td>
<td>.626-.750</td>
<td>.756-.875</td>
<td>.876-1.000</td>
<td>> 1</td>
</tr>
</tbody>
</table>

No SICH

<table>
<thead>
<tr>
<th>Minutes</th>
<th>100</th>
<th>95</th>
<th>90</th>
<th>85</th>
<th>80</th>
<th>75</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>SICH</td>
<td>7</td>
<td>6.5</td>
<td>6</td>
<td>5</td>
<td>4.5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1) Dissolving the clot faster is better

2) **SICH** is a disaster
<table>
<thead>
<tr>
<th>q</th>
<th>0.10</th>
<th>0.20</th>
<th>0.10 or 0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E{p_0(c, q, \theta)}$</td>
<td>$E{F_E(\frac{1}{2} \mid c, q, \theta)}$</td>
<td>$E{\pi_T(.50, q, 1(Y_E > 1), \theta)}$</td>
<td></td>
</tr>
<tr>
<td>$E{F_E(1 \mid c, q, \theta)}$</td>
<td>$E{\pi_T(0, c, q, \theta)}$</td>
<td>$E{\pi_T(1, c, q, \theta)}$</td>
<td></td>
</tr>
<tr>
<td>$E{\pi_T(0, c, q, \theta)}$</td>
<td>$E{\pi_T(1, c, q, \theta)}$</td>
<td>$E{\pi_T(.50, q, 1(Y_E > 1), \theta)}$</td>
<td></td>
</tr>
</tbody>
</table>
a. Elicited Prior Mean Probabilities

<table>
<thead>
<tr>
<th></th>
<th>$c = 0.20$</th>
<th>$c = 0.30$</th>
<th>$c = 0.40$</th>
<th>$c = 0.50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = .10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E{p_0(c, q, \theta)}$</td>
<td>0.10</td>
<td>0.15</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td>$E{F_E(\frac{1}{2}</td>
<td>c, q, \theta)}$</td>
<td>0.25</td>
<td>0.30</td>
<td>0.45</td>
</tr>
<tr>
<td>$E{F_E(1</td>
<td>c, q, \theta)}$</td>
<td>0.35</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td>$E{\pi_T(0, c, q, \theta)}$</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>$E{\pi_T(1, c, q, \theta)}$</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>$q = .20$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E{p_0(c, q, \theta)}$</td>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>$E{F_E(\frac{1}{2}</td>
<td>c, q, \theta)}$</td>
<td>0.40</td>
<td>0.45</td>
<td>0.50</td>
</tr>
<tr>
<td>$E{F_E(1</td>
<td>c, q, \theta)}$</td>
<td>0.50</td>
<td>0.60</td>
<td>0.70</td>
</tr>
<tr>
<td>$E{\pi_T(0, c, q, \theta)}$</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>$E{\pi_T(1, c, q, \theta)}$</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.12</td>
</tr>
</tbody>
</table>

$q = .10$ or .20 \quad E\{\pi_T(.50, q, 1(Y_E > 1), \theta)\} = .15$
$p=11$ model parameters $\rightarrow 22$ normal prior hyper-parameters (11 means + 11 variances). Given the 42 elicited prior mean probabilities from the neurologists, we determined the 22 prior hyper-parameters as follows:

Algorithm for Establishing a Prior (Hoang Nguyen’s idea)

1. Treat the elicited values like true probabilities and simulate 1000 large pseudo samples with $n = 400$ (rather than 36) having exactly 50 patients given each (c,q)

2. Start with a very non-informative pseudo prior on θ, with $\log(\theta_j) \sim N(0,400)$ for all entries

3. Use the {pseudo prior + pseudo data} to compute a pseudo posterior of θ

4. Set **Prior mean** = mean of the 1000 pseudo posterior means

5. Calibrate prior var{$\log(\theta_j)$} to obtain a non-informative prior, to obtain effective sample size = .17 to .22 for each $F_E(s, c, q, \theta)$ and $\pi_T(s, c, q, \theta)$
Elicit a utility $U(Y_E, Y_T) = U(Y)$ from the physicians.

Given model parameter θ, the mean utility of (c,q) is

$$u(c, q, \theta) = E_Y\{U(Y) \mid c, q, \theta\} = \sum_{y_T=0}^{\infty} \int_{y_E=0}^{\infty} U(y) f_{E,T}(y \mid c, q, \theta) dy_E$$

Under a Bayesian model, given data D_n, the optimal (c,q) is the parameter θ that maximizes the posterior mean utility:

$$u(c, q)^{opt}(D_n) = \arg\max_{c,q} E_{\theta}\{u(c, q, \theta) \mid D_n\}$$

$U(Y)$ = Elicited Numerical Outcome Utilities
Utility Function

Elicit a utility $U(Y_E, Y_T) = U(Y)$ from the physicians

Given model parameter θ, the mean utility of (c,q) is

$$u(c, q, \theta) = \mathbb{E}_{c, q, \theta} [U(c, q, \theta)]$$

Under a Bayesian model, given data D_n the optimal (c, q) maximizes the posterior mean utility:

$$u(c, q)^{opt}(D_n) = \arg \max_{c, q} \mathbb{E}_{\theta} \{ u(c, q, \theta) \mid D_n \}$$

What has been learned from the data D_n about θ, and hence about the expected utility of using (c, q) to treat a patient
Acceptability Criteria

\((c, q)\) has **unacceptably high toxicity** if

\[
\Pr\{\pi_T(1, c, q, \theta) > \bar{\pi}_T \mid D_n\} > p_T
\]

\((c, q)\) has **unacceptably low efficacy** if

\[
\Pr\{F_E(1, c, q, \alpha) < \bar{\pi}_E \mid D_n\} > p_E
\]

large probabilities, like .90 or .95
Trial Conduct (Up to a pre-specified N_{max} patients)

1) Treat 1st patient at lowest pair $(c, q) = (.20, .10)$

2) Treat each patient at the *optimal* (c, q) pair, that maximizes the posterior expected utility

3) Do not skip untried (c, q) pairs when escalating

4) If no (c, q) pair is acceptable \rightarrow Stop the trial

5) Select the *optimal* (c, q) pair at the end of the trial
Simulation Study Design

1) $c = 0.2, 0.3, 0.4, \text{ or } 0.5 \text{ mg/kg}, \quad q = 0.1 \text{ or } 0.2$

2) $N_{\text{max}} = 36 \text{ patients}, \quad \text{cohort size } = 1$

3) Accrual rate = (1 patient /month /site) x 15 sites x 5% eligible = .75 eligible patients per month

4) 10,000 replications per scenario

5) $\bar{\pi}_T = 0.15, \quad \pi_E = 0.50 \quad (\text{elicited from the neurologists})$

6) $p_E = p_T = .95 \text{ for the early stopping (acceptability) criteria}$

We studied 6 basic scenarios, and also performed sensitivity analyses for (i) $N = 24 \text{ to } 240$, (ii) cohort size $= 1, 2, 3$, (iii) prior informativeness, (iv) shapes of true λ and π

→ **14** supplementary tables in the *Biometrics* paper
Computer Simulation Results \((N_{\text{max}} = 36) \)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(q)</th>
<th>(c)</th>
<th>(u^{\text{true}}(c, q))</th>
<th>% Sel (No. Pats.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior means</td>
<td>0.1</td>
<td>(0.2)</td>
<td>46.9</td>
<td>2% (3.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.3)</td>
<td>51.5</td>
<td>2% (1.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.4)</td>
<td>59.2</td>
<td>7% (3.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.5)</td>
<td>64.4</td>
<td>29% (8.7)</td>
</tr>
<tr>
<td>1.0</td>
<td>0.2</td>
<td>(0.2)</td>
<td>56.1</td>
<td>2% (0.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.3)</td>
<td>60.5</td>
<td>2% (0.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.4)</td>
<td>65.1</td>
<td>11% (4.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.5)</td>
<td>70.6</td>
<td>38% (11.5)</td>
</tr>
</tbody>
</table>

Grey shaded utilities correspond to \((c, q)\) with unacceptable efficacy or toxicity.
Computer Simulation Results \((N_{\text{max}} = 36) \)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(q)</th>
<th>(u^{\text{true}}(c, q))</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>% none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe, high (c) and (q = 0.2) best</td>
<td>0.1</td>
<td>49.0</td>
<td>54.9</td>
<td>62.4</td>
<td>71.5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(u^{\text{true}}(c, q))</td>
<td>52.6</td>
<td>58.4</td>
<td>65.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Sel (No. Pats.)</td>
<td>1% (2.6)</td>
<td>1% (1.2)</td>
<td>4% (2.3)</td>
<td>17% (5.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Sel (No. Pats.)</td>
<td>1% (0.5)</td>
<td>1% (0.6)</td>
<td>13% (5.3)</td>
<td>60% (16.9)</td>
<td></td>
</tr>
</tbody>
</table>

Grey shaded utilities correspond to \((c, q)\) with unacceptable efficacy or toxicity.
Computer Simulation Results \(N_{\text{max}} = 36 \)

Hardest case: \((q, c) = (0.1, 0.4)\) is best but \((0.1, 0.5)\) has unacceptably low efficacy

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(q)</th>
<th>(u^{\text{true}}(c, q))</th>
<th>(c)</th>
<th>% Sel (No. Pats.)</th>
<th>% none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe, middle (c) and (q = .1) best</td>
<td>0.1</td>
<td>57.3</td>
<td>0.2</td>
<td>3% (2.4)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>8% (3.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>33% (9.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>33% (9.3)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>57.1</td>
<td>0.2</td>
<td>2% (0.5)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>2% (0.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>7% (5.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>3% (2.8)</td>
<td></td>
</tr>
</tbody>
</table>

Grey shaded utilities correspond to \((c, q)\) with unacceptable efficacy or toxicity.
Computer Simulation Results \(N_{\text{max}} = 36 \)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(q)</th>
<th>(u^{\text{true}}(c, q))</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>% none</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.1</td>
<td>(u^{\text{true}}(c, q))</td>
<td>61.1</td>
<td>58.7</td>
<td>51.6</td>
<td>48.0</td>
<td>12</td>
</tr>
<tr>
<td>Safe, low (c) and (q=.1) best</td>
<td>0.2</td>
<td>(u^{\text{true}}(c, q))</td>
<td>58.2</td>
<td>53.9</td>
<td>49.5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Sel (No. Pats.)</td>
<td>43% (14.4)</td>
<td>7% (3.3)</td>
<td>6% (3.4)</td>
<td>5% (2.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Sel (No. Pats.)</td>
<td>22% (5.0)</td>
<td>3% (1.5)</td>
<td>2% (2.2)</td>
<td>1% (0.9)</td>
<td></td>
</tr>
</tbody>
</table>

Grey shaded utilities correspond to \((c,q)\) with unacceptable efficacy or toxicity.
Computer Simulation Results \((N_{\text{max}} = 36) \)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(q)</th>
<th>(\hat{u}(c, q))</th>
<th>(c)</th>
<th>% Sel (No. Pats.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>44.8</td>
<td>0.2</td>
<td>4% (6.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.2</td>
<td>0.3</td>
<td>1% (1.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.2</td>
<td>0.4</td>
<td>1% (2.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.2</td>
<td>0.5</td>
<td>1% (2.2)</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>45.2</td>
<td>0.2</td>
<td>1% (0.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.0</td>
<td>0.3</td>
<td>0% (0.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.0</td>
<td>0.4</td>
<td>0% (0.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.3</td>
<td>0.5</td>
<td>0% (0.6)</td>
</tr>
</tbody>
</table>

Grey shaded utilities correspond to \((c,q)\) with unacceptable efficacy or toxicity.
Computer Simulation Results \((N_{\text{max}} = 36) \)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(q)</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>% none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe, but</td>
<td>0.1</td>
<td>38.2</td>
<td>40.0</td>
<td>41.9</td>
<td>43.3</td>
<td>83</td>
</tr>
<tr>
<td>no ((c, q))</td>
<td>0.2</td>
<td>39.3</td>
<td>41.2</td>
<td>43.1</td>
<td>44.4</td>
<td></td>
</tr>
<tr>
<td>acceptable</td>
<td>(u^{\text{true}}(c, q))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Sel (No. Pats.)</td>
<td>0% (2.8)</td>
<td>0% (1.1)</td>
<td>1% (1.6)</td>
<td>7% (5.2)</td>
<td></td>
</tr>
</tbody>
</table>

Grey shaded utilities correspond to \((c, q)\) with unacceptable efficacy or toxicity.
Conclusions and Addenda

The method is reliable, safe, and robust:

- **Very likely to select a \((c, q)\) pair with high utility**, i.e. optimal or nearly optimal
- **Very likely to stop early if all \((c, q)\) are unacceptable**, i.e. if all pairs have either unacceptably low efficacy (<50%) or unacceptably high toxicity (>15%)
- **Robust** to deviations from the assumed model.

A simpler version of the method with \(q \equiv .10\) will be used for a planned trial of IA tPA *in pediatric patients*, to optimize \(c\) in \(\{.20, .30, .40, .50\}\)

A computer program “CiBolus” is available at https://biostatistics.mdanderson.org/SoftwareDownload
Current Research: Adapt the approach to oncology trials:

Expand time and reverse the time frames of Y_E and Y_T

$Y_T = $ Time to toxicity, e.g. during first 6 weeks
$Y_E = $ Binary “response” indicator, e.g. at 12, 18, or 24 weeks

- Toxicity may be ordinal to account for severity
- At observation of toxicity, treatment may be stopped, or suspended & later re-started, and the dose given subsequently may be decreased
 (i.e., this is a “Dynamic Treatment Regime”)
- Late-onset toxicities may occur after response evaluation