Medical Imaging using Computational Conformal/Quasi-conformal Geometry

Part I of the sequel of 2 talks.
More applications of QC theory will be presented by Ronald Lui

Prof. Tony F. Chan
Hong Kong University of Science and Technology (HKUST)

Jointly work with:
Prof. David Gu, CS, Stony Brook
Prof. Ronald Lok Ming Lui, Math, CUHK
Prof. Yalin Wang, CS, ASU
Dr. Alvin Wong, Math, UCI
Prof. Shing-Tung Yau, MATH, Harvard, CUHK
Outline Of The Talk

- **Motivation**
- Part I: Conformal Geometry & Applications
- Part II: Quasi-conformal Geometry & Applications
- Conclusion
What is Medical Morphometry?

Medical Morphometry: Tracking of shape changes/abnormality; analysis of medical images.

Main goal: Generate diagnostic images for visualization of structural changes.

How Conformal/Quasi-conformal theory help?
Brain Mapping Tasks

Automatic identification and localization of structures and function

Statistical shape analysis

Spatial normalization in Canonical Space

PDEs, ...

Shape representation
Hippocampus: long-term memory & spatial navigation; Shape analysis for Alzheimer's disease

Lateral ventricles: fluid-filled structures deep in the brain; Enlarged in disease; Shape analysis for measures of disease progression.
Outline Of The Talk

- Motivation
- **Part I: Conformal Geometry & Applications**
 - Basic Mathematical Background
 - Computational Algorithms
 - Applications
- **Part II: Quasi-conformal Geometry & Applications**
- Conclusion
What is Conformal map?

- Conformal map \(f : M \rightarrow N \) = preserves inner product up to a scaling factor (the conformal factor \(\lambda \)).

- Mathematically, \(f^*(ds_N^2) = \lambda(x_1, x_2)ds_M^2 \) where \(ds_M^2 = \sum_{i,j=1}^{2} g_{ij}dx^i \wedge dx^j \)
Why Conformal for Brain Mapping?

- Metric preserved up to scaling \iff Local geometry preserved!
- Angle-preserving \iff inherits a natural orthogonal grid on the surface.
- Simple (g_{ij}) Matrix \iff simple differential operator expression on the parameter domain and simple projected equations.

\[\Phi \]
Outline Of The Talk

- Motivation
- **Part I: Conformal Geometry & Applications**
 - Basic Mathematical Background
 - **Computational Algorithms**
 - Applications
- **Part II: Quasi-conformal Geometry & Applications**
- Conclusion
Computation of Conformal Maps

- Genus zero surface conformal parameterization

Theorem: (Genus 0)

\[
\begin{align*}
 f : S_1 & \rightarrow S_2 \\
 \text{Genus 0} & \\
 \text{Conformal}
\end{align*}
\]

Minimize:

\[
E_{\text{harmonic}}(f) = \frac{1}{2} \int_{S_1} |\nabla_{g_1} f|_{g_2}^2 dS_1
\]

\[
|\nabla_{g_1} f|_{g_2}^2 = tr(\nabla^T f \nabla f)
\]

Discrete version of Harmonic energy:

\[
E(f) = \langle f, f \rangle = \frac{1}{2} \sum_{[u,v] \in K} k_{u,v} |f(u) - f(v)|^2
\]

\[
\Delta_{PL}(f) = \sum_{[u,v] \in K} k_{u,v} (f(u) - f(v))
\]

(Harmonic Energy)

(Discrete Laplacian)
Genus-0 Conformal Maps: Examples

Two brain surfaces are of the same subject at different time.

Conformal mapping:

Good parameter domain
Curvature flow method

Basic idea: conformally deform Riemannian metric to another Riemannian metric to achieve prescribed curvature

Curvature Flow Algorithm:

\[g = (g_{ij}) \quad \text{(Riemannian metric)} \quad \bar{g} = e^{2u} g \quad \text{(Another Riemannian metric)} \]

The Gaussian curvature \(\bar{K} \) under \(\bar{g} \) is:

\[\bar{K} = e^{2u} (-\Delta_g u + K) \]

WE HAVE THE CURVATURE FLOW EQUATION:

\[\frac{dg_{ij}(t)}{dt} = 2(\bar{K} - K)g_{ij}(t) \]

(Flow the metric to a new metric with prescribed curvature \(\bar{K} \))

\[g(t) = e^{2u(t)} g(0) \quad \rightarrow \quad \frac{du(t)}{dt} = 2(\bar{K} - K) \]

(Yamabe Equation)

(Rewriting the equation in term of \(u(t) \))
Examples: Curvature Flow Method

(5 landmarks)

(7 landmarks)
Outline Of The Talk

- Motivation
- Part I: Conformal Geometry & Applications
 - Basic Mathematical Background
 - Computational Algorithms
 - Applications
- Part II: Quasi-conformal Geometry & Applications
- Conclusion
Application: Brain Registration

Brain Conformal Parameterization:
A canonical domain for brain surface analysis!

Genus 0

Open surface (disk is removed at the back)
Application: Brain Registration

Conformal Slit Map: (using curvature flow method)
Sulcal landmarks are mapped to circular slits or horizontal slit

Circular Slit map
Horizontal Slit map

Another brain
Solving PDEs on surfaces: Conformal Approach

- Goal: Solve equations on the surface by mapping it onto the 2D conformal parameter domain.
- Differential operators are computed on 2D domain with simple formula.
- Example: \(\frac{\partial \tilde{u}}{\partial t} = -\frac{1}{\lambda} (\tilde{u} \cdot \nabla) \tilde{u} + \frac{\nu}{\lambda} \nabla^2 \tilde{u} + f \) (Navier-Stokes)

<table>
<thead>
<tr>
<th>General parameterization:</th>
<th>Conformal parameterization:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient: (\nabla_M f = (g^{11}\partial_x f + g^{21}\partial_y f)i + (g^{12}\partial_x f + g^{22}\partial_y f)j)</td>
<td>(\nabla_M f = \frac{1}{\lambda} \partial_x f i + \frac{1}{\lambda} \partial_y f j)</td>
</tr>
<tr>
<td>Laplacian: (\Delta_M f = \frac{1}{\sqrt{g^{11}g^{22} - g^{12}g^{12}}} \left[\partial_x (\sqrt{g^{11}g^{22} - g^{12}g^{12}} (g^{11}\partial_x f + g^{21}\partial_y f)) + \partial_y (\sqrt{g^{11}g^{22} - g^{12}g^{12}} (g^{12}\partial_x f + g^{22}\partial_y f)) \right])</td>
<td>(\Delta_M f = \frac{1}{\lambda} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right))</td>
</tr>
<tr>
<td>Divergence: (\text{div}_M(Xi + Yj) = \frac{1}{\sqrt{g^{11}g^{22} - g^{12}g^{12}}} \left[\partial_x \left(\sqrt{g^{11}g^{22} - g^{12}g^{12}} X \right) + \partial_y \left(\sqrt{g^{11}g^{22} - g^{12}g^{12}} Y \right) \right])</td>
<td>(\text{div}_M(Xi + Yj) = \frac{1}{\lambda} \left[\partial_x (\lambda X) + \partial_y (\lambda Y) \right])</td>
</tr>
</tbody>
</table>
Applications: Imaging on surfaces

- **Denoising**

- **Inpainting**

\[
E_{TV}^S(u) = \int_S \left[\|\nabla_S u\|_S + |u - f|^2 \right] dS
\]

\[
\frac{\partial u}{\partial t} = 2\nu(f - u) + \text{div}_M \left(\frac{\nabla_M u}{|\nabla_M u|_M} \right)
\]

\[
= 2\nu(f - \zeta) + \frac{1}{\lambda} \text{div} \left(\sqrt{\lambda} \frac{\nabla \zeta}{|\nabla \zeta|} \right)
\]

\[
\frac{\partial u}{\partial t} = \text{div}_M \left[\frac{g(\kappa)}{|\nabla_M u|_M} \nabla_M u \right] = \frac{1}{\lambda} \nabla \cdot \left[\sqrt{\lambda} g(\kappa) \frac{\nabla \zeta}{|\nabla \zeta|} \right], \quad x \in \phi^{-1}(D)
\]

and \(\zeta = \zeta^0, \quad x \in \phi^{-1}(D^c) \)

\[
\kappa = \text{div}_M \left(\frac{\nabla_M u}{|\nabla_M u|_M} \right) = \frac{1}{\lambda} \nabla \cdot \left(\sqrt{\lambda} \frac{\nabla \zeta}{|\nabla \zeta|} \right)
\]

(\(\phi = \) conformal parametrization of \(M \) and \(\zeta = u \circ \phi \))
Application: Automatic Sulcal Landmark Tracking

Extraction of high mean curvature region by Chan-Vese segmentation

\[F(c_1, c_2, \psi) = \int_S (I_f - c_1)^2 H(\psi) dS + \int_S (I_f - c_2)^2 (1 - H(\psi)) dS + \nu \int_S |\nabla_S H(\psi)| dS \]

\[c_1 = \frac{\int_D I_f \circ \phi(x, y) H(\psi \circ \phi(x, y)) \lambda(x, y) dxdy}{\int_D H(\psi \circ \phi(x, y)) \lambda(x, y) dxdy} \]

\[c_2 = \frac{\int_D I_f \circ \phi(x, y) (1 - H(\psi \circ \phi(x, y))) \lambda(x, y) dxdy}{\int_D (1 - H(\psi \circ \phi(x, y))) \lambda(x, y) dxdy} \]

Euler Lagrange equation is:

\[\frac{\partial \psi}{\partial t} = \lambda \delta(\psi) \left[\nu \text{div} \left(\frac{\nabla_S \psi}{||\nabla_S \psi||_S} \right) - (I_f - c_1)^2 - (I_f - c_2)^2 \right] \]

or

\[\frac{\partial \psi \circ \phi}{\partial t} = \lambda \delta(\psi \circ \phi) \left[\nu \frac{1}{\lambda} \text{div} \left(\sqrt{\lambda} \frac{\nabla \psi \circ \phi}{||\nabla \psi \circ \phi||} \right) - (I_f \circ \phi - c_1)^2 - (I_f \circ \phi - c_2)^2 \right] \]
Application: Shape Analysis w/ Conformal Structure

AIDS

Healthy (21 yrs old)
Application: Shape Analysis w/ Conformal Structure

AIDS

Healthy (21 yrs old)

Aspect ratio tells the conformal similarity
Application: Shape Analysis w/ Conformal Structure

HEALTHY Patient (William Syndrome)

Conformal dissimilarity is measured by the locations and radii of circles

Fixing two circles to the center to remove the Mobius ambiguity
Outline Of The Talk

- Motivation
- Part I: Conformal Geometry & Applications
- Part II: Quasi-conformal Geometry & Applications
 - Basic Mathematical Background
 - Computational Algorithms
 - Applications
- Conclusion
What is Quasi-conformal map?

- Generalization of conformal maps (angle-preserving);
- Orientation preserving homeomorphism between Riemann surfaces;
- Bounded conformality distortion;
- Intuitively, map infinitesimal circle to ellipse;
- Mathematically, it satisfies: \(\frac{\partial f}{\partial \bar{z}} = \mu(z) \frac{\partial f}{\partial z} \)

\[
\begin{align*}
\frac{\partial f}{\partial \bar{z}} &= \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right); \\
\frac{\partial f}{\partial z} &= \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)
\end{align*}
\]

- Beltrami coefficient:
 - Measure conformality distortion;
 - Invariant under conformal transformation

Beltrami coefficient: \(K = \frac{1 + |\mu|}{1 - |\mu|} \)

\(\arg(\mu)/2 \)

Conformal \(\iff \mu = 0 \iff \frac{\partial f}{\partial \bar{z}} = 0 \)
Example: Quasi-conformal

Conformal

\[f^* (ds_E^2) = \lambda |dz|^2 \]

Quasi-conformal

\[f^* (ds_E^2) = \left| \frac{\partial f}{\partial \bar{z}} \right|^2 |dz + \mu(z)d\bar{z}|^2 \]
Why Quasi-conformal?

1. **Natural deformations** are unlikely to be rigid, or isometric, or even conformal. The search space for the mapping should include all diffeomorphisms.

2. **Quasi-conformal Geometry** studies the deformation pattern between shapes. It effectively measures the conformality distortion under the deformation.
Goal:
Look for a simple representation of surface diffeomorphisms, called Beltrami representation. (Lui & Wong et al. 2009)

Theorem:
Let S_1 and S_2 be two surfaces. Suppose $f : S_1 \rightarrow S_2$ is a surface diffeomorphism from S_1 and S_2. Given 3 points correspondence $\{p_1, p_2, p_3 \in S_1\} \leftrightarrow \{f(p_1), f(p_2), f(p_3) \in S_2\}$. f can be represented by a unique Beltrami coefficient $\mu : S_1 \rightarrow \mathbb{C}$.
Motivation

Part I: Conformal Geometry & Applications

Part II: Quasi-conformal Geometry & Applications
 - Basic Mathematical Background
 - Computational Algorithms
 - Applications

Conclusion
Computation of Quasi-conformal map

Given a Beltrami coefficient, how to get the quasi-conformal map?

Answer: 1. Beltrami Holomorphic Flow method;
2. Curvature flow method to convert QC into C
(will be presented by Ronald Lui)

Theorem: \((Beltrami \ Holomorphic \ Flow \ method) \)

\[
\text{If:} \quad \mu(t)(z) = \mu(z) + t\nu(z) + t\epsilon(t)(z) \\
\text{Then:} \quad f^{\mu(t)}(w) = f^{\mu}(w) + t\hat{f}^{\mu}[\nu](w) + o(t)
\]

where \(\hat{f}[\nu](w) = -\frac{f^{\mu}(w)(f^{\mu}(w) - 1)}{\pi} \int_{\mathbb{C}} \frac{\nu(z)((f^{\mu})_{z}(z))^2}{f^{\mu}(z)(f^{\mu}(z) - 1)(f^{\mu}(z) - f^{\mu}(w))} \, dx \, dy. \)

\[
\mu_0 = 0 \quad \rightarrow \quad \mu_1 = \mu/N \quad \rightarrow \quad \ldots \quad \rightarrow \quad \mu_N = \mu
\]

\[
f^0 = \text{id} \quad \underbrace{\text{BHF}}_{f^{\mu/N}} \quad \underbrace{\text{BHF}}_{\ldots} \quad \underbrace{\text{BHF}}_{f^{\mu}}
\]
QC parameterization
example of simply – connected domain

\[\mu = \frac{z - z_0}{2\sqrt{1 + h^2}} \]

QC parameterization
example of multiply – connected domain

(a) checker-board
(b) \(\mu(z) = 0 \)
(c) \(z_0 = 0 \)
(d) \(z_0 = 0.5 + i0.5h \)
(e) \(z_0 = 1 + ih \)
Outline Of The Talk

- Motivation
- Part I: Conformal Geometry & Applications
- Part II: Quasi-conformal Geometry & Applications
 - Basic Mathematical Background
 - Computational Algorithms
 - Applications
- Conclusion
Quasi-conformal for Registration

Example: *Hippocampal registration with geometric matching*

Hippocampus = limbic system; important role for long-term memory and spatial navigation

- No well-defined landmarks.
- Meaningful surface registration = DIFFICULT!

Optimizing a compounded energy:

\[
E_{shape}(f^\mu) = \alpha \int_D |\mu|^2 + \beta \int_D (H_1 - H_2(f^\mu))^2 + \gamma \int_D (K_1 - K_2(f^\mu))^2
\]

Theorem: Let \(S_1 \) and \(S_2 \) be two surfaces (e.g. HP surfaces). Suppose \(f : S_1 \rightarrow S_2 \) is a registration between \(S_1 \) and \(S_2 \). Assume \(\alpha, \beta, \gamma \neq 0 \), then:

\[
E_{shape}(f) = 0 \iff S_1 \text{ is equal to } S_2 \text{ up to a rigid motion}
\]
Quasi-conformal for Registration

Example: Hippocampal registration with geometric matching

Basic Idea: Find a registration f that minimizes the following energy functional:

$$E_{\text{shape}}(f^\mu) = \alpha \int_D |\mu|^2 + \beta \int_D (H_1 - H_2(f^\mu))^2 + \gamma \int_D (K_1 - K_2(f^\mu))^2$$

Optimization: Minimize with respect to the the Beltrami coefficient

Easily control the diffeomorphic property!

Simplified optimization problem:

$$\min_{f \in \mathbb{F}_{\text{Diff}}} E_0(f) \text{ where } \mathbb{F}_{\text{Diff}} = \{ f : S_1 \to S_2 : f \text{ is a diffeomorphism} \}$$

$$\min_{\mu \in \mathbb{F}_{\text{BC}}} E(\mu) \text{ where } \mathbb{F}_{\text{BC}} = \{ \mu : S_1 \to \mathbb{D} : |\mu|_\infty < 1 \} \text{ is the set of BCs.}$$

Compute the direction of descent and adjust f through adjusting BC.

Advantage:
1. BC doesn’t need to be 1-1, onto. Only constraint is norm < 1.
2. The constraint can be easily controlled
 (starting from conformal map with BC $= 0$ everywhere)
Quasiconformal for Registration

Energy:

\[E_{\text{shape}}(\mu) = \alpha \int_D |\mu|^2 + \beta \int_D (H_1 - H_2(f^\mu))^2 + \gamma \int_D (K_1 - K_2(f^\mu))^2 \]

Euler-Lagrange Equation:

\[
\frac{d}{dt} \bigg|_{t=0} E_{\text{shape}}(\mu + tv) = \int_D \frac{d}{dt} \bigg|_{t=0} |\mu + tv|^2 + \int_D \frac{d}{dt} \bigg|_{t=0} (H_1 - H_2(f^{\mu+tv}))^2 + \int_D \frac{d}{dt} \bigg|_{t=0} (K_1 - K_2(f^{\mu+tv}))^2 \\
= 2 \int_D \mu \cdot v - 2 \int_D (H_1 - H_2(f^\mu)) \nabla H_2(f^\mu) \cdot v \\
- 2 \int_D (K_1 - K_2(f^\mu)) \nabla K_2(f^\mu) \cdot v \\
= 2 \int_w \mu(w) \cdot v(w) - 2 \int_z \tilde{H}(z) \cdot \int_w G(z, w)v(w) - 2 \int_z \tilde{K}(z) \cdot \int_w G(z, w)v(w) \\
= 2 \int_w \{\mu(w) - \int_z [(\tilde{H} + \tilde{K}) \cdot G, \det(\tilde{H} + \tilde{K}, G)] \} \cdot v
\]

Variation obtained from BHF

Iterative Scheme:

\[
\mu^{n+1} - \mu^n = -2(\mu^n - \int_z [(\tilde{H}^n + \tilde{K}^n) \cdot G^n, \det(\tilde{H}^n + \tilde{K}^n, G^n)])dt
\]

where \(\int_w \cdot := \int_D \cdot dw \) and \(\int_z \cdot := \int_D \cdot dz \) is defined as the integral over the variable \(w \) and \(z \) respectively; \(\tilde{H} := (H_1 - H_2(f^\mu))\nabla H_2(f^\mu); \tilde{K} := (K_1 - K_2(f^\mu))\nabla K_2(f^\mu); \det(a, b) \) is the determinant of the 2 by 2 matrix or equivalently, the norm of the cross product of \(a \) and \(b \).
Quasi-conformal for Registration

Example: Hippocampal registration with geometric matching
Main Goal: Detect abnormal deformation on biological organs
Applications: detecting brain tumor, tracing deformation (medicine evaluation)
Difficulties:
1. Biological organs are geometrically complicated (Example: Brain);
2. Examining abnormalities by the human eye is inefficient & inaccurate.

Goal:
Develop automatic methods to detect & track abnormalities over time.

Tool:
BC: Detecting abnormalities as non-conformal deformation =
1. serious abnormal change;
2. invariant to normal growth [local geometry preserving]
Quasiconformal for Shape Analysis

- Basic idea: *(Lui & Wong et al. 2009)*
 - Compute quasiconformal map (registration) between original and deformed surfaces;
 - Compute its Beltrami coefficients:

\[|\mu_{\tilde{F}}| = |\mu_{\phi_d^{-1} \circ F \circ \phi_o}| = |\mu_F| \]
Quasiconformal for Shape Analysis

\[|f^* (ds^2_E) - \text{Identity}| \] (Isometric index)

Isometric indicator: Normal region: [0.75, 1.03]
Abnormal region: [0.08, 1.23]

Beltrami coefficient: Normal region: [0.01, 0.028]
Abnormal region: [0.102, 0.143]
BC effectively shows the region of gyrification!

Brain (Patient)

Brain after gyrification (abnormal deformation)

(Zoom-in)

BC on conformal domain

White = high BC = abnormal!
Quasiconformal for Shape Analysis

Tracking the degree of gyrification over time using Beltrami Index!

Quantitative measurement of gyri thickening!
Quasiconformal for Shape Analysis

BC + Curvatures = complete shape index!

$$E(\mu) = \int_D \alpha |\mu|^2 + \beta (H_1 - H_2(f^\mu))^2 + \gamma (K_1 - K_2(f^\mu))^2$$

Temporal shape changes of healthy and AD HPs:

Normal 1 Normal 2 Alzheimer 1 Alzheimer 2
Shape energy for deformation pattern (from t=0 to t=12 Months)

Statistical significance p-map

(100 normal & 100 AD)
Quasiconformal for **Shape Analysis**

$\text{BC} + \text{Curvatures} = \text{complete shape index!}$

Left = healthy;
Right = Unhealthy

Beltrami coefficient is not a good shape index for hippocampal shape analysis

Beltrami coefficient + Curvatures is a better shape index

$$E_{\text{shape}}(\mu) = \alpha \int_{D} |\mu|^2 + \beta \int_{D} (H_1 - H_2(f^\mu))^2 + \gamma \int_{D} (K_1 - K_2(f^\mu))^2$$
Conclusion

- Computational Conformal/Quasi-conformal Geometry can be used for medical imaging
- More applications on Quasi-conformal geometry in Medical Imaging and computer graphics will be presented by Ronald Lui.

THANK YOU!