Constrained Optimization and Calibration for Deterministic and Stochastic Simulation Experiments

Herbie Lee & Bobby Gramacy

University of California, Santa Cruz
& University of Chicago Booth School of Business

Additional collaborators:

Genetha Gray (Sandia National Laboratories)

Crystal Linkletter (Brown University)

Thanks to AIM, NSF, RAND for various support

http://www.ams.ucsc.edu/~herbie
Outline

1. Optimization and Expected Improvement
2. Constrained Optimization
3. Integrated Expected Conditional Improvement
4. Examples
Optimization and Calibration

For concreteness, we focus on minimization here

\[
\text{Find } x^* = \arg \min_{x \in \mathcal{X}} f(x)
\]

Variety of possible approaches:

- Gradient-based methods
- Simulated annealing
- Genetic algorithms
- Surrogate modeling
Surrogate Modeling

- Use a statistical model as a fast approximation to the unknown objective function
- Traditional model is a Gaussian Process (GP)
 - A random process with any finite collection of points having a joint multivariate normal distribution, with covariance depending on the displacement between the points
- Fit model and find minimum
- Or search iteratively
Improvement Function

\[I(x) = \max\{f_{\text{min}} - f(x), 0\} \]

- \(f_{\text{min}} = \min\{f(x_1), \ldots, f(x_N)\} \) is the current known minimum
- How much lower is a new point?
- No improvement if the new point is not lower
\[\mathbb{E}\{I(x)\} = (f_{\text{min}} - \hat{z}_N(x)) \Phi \left(\frac{f_{\text{min}} - \hat{z}_N(x)}{\hat{\sigma}_N(x)} \right) + \hat{\sigma}_N(x) \phi \left(\frac{f_{\text{min}} - \hat{z}_N(x)}{\hat{\sigma}_N(x)} \right) \]

- Expectation is with respect to the predictive distribution of the surrogate
- Balances expected improvement because the predicted mean is small with expected improvement because the variability is large
- Can minimize iteratively by choosing next sampling location as the point with largest expected improvement (Jones et al., 1998)
Expected Improvement
Constrained Optimization

A more general optimization problem:

\[Z(x) = f(x) + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \eta^2) \]

\[C(x) = c(x + \varepsilon_c) = \mathbb{I}_{\{x + \varepsilon_c \in C\}} \in \{0, 1\} \]

\[x^* = \arg \min_{x \in \{x: C(x)=1\}} f(x) \]

- \(C \) is the constraint region
- Allows noise in both the function and the constraint
- Both \(f \) and \(c \) may be unknown, with \(f \) expensive to evaluate
Types of Constraints

- Known — c or C is known a priori
- Unknown — c is unknown, but f still returns a valid value
- Hidden — c is unknown, and f does not return a valid value for $x \notin C$

Known constraints present an obvious optimization strategy.
Hidden constraints are somewhat straightforward.
Fun with unknown constraints

- Evaluating f for $x \notin C$ still yields information about f
- When do we learn enough about f to make it worth choosing a new point x which we think may not be in C?
- We need a criterion which quantifies how much we expect to learn about the minimum, which may be a point other than the one at which we are evaluating f
Conditional Improvement

\[I(y|x) = \max\{f_{\min} - Z(y|x), 0\} \]

- \(f_{\min} = \min \mathbb{E}\{Z(\cdot)\} \) is now defined as the minimum of the posterior predictive over all locations

- \(Z(y|x) \sim F_N(y|x) \), the predictive distribution of the response \(Z(y) \) at a reference location \(y \) under the surrogate model \(f_N \) given that the candidate location \(x \) is added into the design

- \(I(y) - I(y|x) \) measures how much we learn about \(f(y) \) by evaluating \(f(x) \)

- Expected conditional improvement (ECI) is \(\mathbb{E}\{I(y|x)\} \)
Defining the minimum of a noisy function

\[Z(y) \sim f_N(y) \]
\[Z(y|x) \sim f_N(y|x) \]

(a): \(f_{\min} \equiv \hat{z} \)

(b): \(f_{\min} \)
Integrated Expected Conditional Improvement

\[\mathbb{E}_g \{ I(x) \} = - \int_X \mathbb{E} \{ I(y|x) \} g(y) \, dy \]

or \[\mathbb{E}_g \{ I(x) \} = \int_X \left(\mathbb{E} \{ I(y) \} - \mathbb{E} \{ I(y|x) \} \right) g(y) \, dy \]

- Integrate w.r.t. density \(g(y) \)
 - Unconstrained, \(g(y) \propto 1 \) gives a general global criterion
 - For known constraints, could use \(g(y) \propto C(y) \)
 - For unknown constraints, \(g(y) = \mathbb{P}(C(y) = 1) \)

- Choose next point \(x \) to maximize IECI

- Estimate IECI via Monte Carlo approximation
Example of EI vs. IECI

\[Z(x) = \sin(x) + 2.55\phi_{0.45}(x - 3) + N(0, 0.15^2) \text{ for } x \in [0, 7] \]
EI vs. IECI with Constraint

predictive surface

EI v. IECI
Finding the Minimum IECI

- Approximate search by looking at a Latin Hypercube design of randomly chosen candidate locations
- Evaluate IECI at candidate locations and find the minimum
- Also consider an “oracle” point at the minimum of the predictive mean
Estimating the Unknown Constraint

- Use a surrogate model for the probability $\mathbb{P}(C(y) = 1)$
- We use a classification GP
- Can fit with particle learning for efficient updates
- R package plgp
1-D Example

predictive surface

progress over time

probability of constraint violation

progress meter
2-D example

\[f(x_1, x_2) = -w(x_1)w(x_2), \text{ where} \]
\[w(x) = \exp(-(x - 1)^2) + \exp(-0.8(x + 1)^2) - 0.05 \sin(8(x + 0.1)) \]

\(C \) is given by the 95\% contour of a bivariate normal distribution centered at the origin, with correlation \(-0.5\) and variance \(0.75^2\)

Global minimum is at \((x_1, x_2) = (-1.408, -1.408) \notin C\)
2-D Results

- **pred mean**
- **progress over time**
- **probability of constraint violation**
- **progress meter**
Health Policy Example

Application to a Health Care Policy Simulator (COMPARE) at RAND (Girosi et al., 2009)

- Microsimulation Model
- Agent-based simulator to model health insurance decisions of individuals
- Allows various policy interventions
- Utility maximization at the agent level
- Statistical issues in calibration and optimization
- Can be run deterministically or stochastically
Six calibration parameters, relating to utilities for adults and for children on each of ESI, individual, and public programs

Constraints relate to estimated elasticities of policy choice to price information

Objective function is a combination of absolute errors in predicted counts and squares of predicted elasticities

$$Z(\mathbf{x}) = \alpha_1 \sum_{j=1}^{4} |y_{aj} - \hat{y}_{aj}| + \alpha_2 \sum_{j=1}^{4} |y_{cj} - \hat{y}_{cj}| + \sum_{k=1}^{4} \alpha_3 k y_{ek}^2 \mathbb{I}\{y_{ek} > 1\}$$
Deterministic Model Calibration

![Graphs of pred mean and prob. of constraint violation for different categories](image)
Stochastic Model Calibration Results

- **esi**
 - Pred mean
 - Prob. of constraint violation

- **ind**
 - Pred mean
 - Prob. of constraint violation

- **pub**
 - Pred mean
 - Prob. of constraint violation
Conclusions

- Constrained optimization can be quite difficult
- Use of statistical surrogate models can speed up optimization
- IECI is more general than EI
- Applies for deterministic and stochastic simulators
References

