Counting and enumeration

Counting

- Output the number of solutions
- Example: \#\text{sat}, \#\text{Perfect Matching}, \text{Permanent}, problems on graph, knots polynomials

Enumeration

- Generate all solutions one by one
- Output can be large
- Natural algorithmic task

This talk: look at these two tasks for fragments of conjunctive (i.e. \{\exists, \land\}) queries (mainly \text{ACQ})
Enumeration
- A tour on complexity measure for enumeration
- Results for query problems
- Complexity characterization for ACQ

Weighted Counting
- Polynomial representation of query
- Counting through polynomial evaluation
- Characterization of the tractability frontier for ACQ

Common point: role of free variables in formulas.
Enumeration: measure of complexity

Intractability

- **NP-completeness of the existence of one solution** *(hard to start)*
- hard after generation of a part of the solution set *(hard to continue)*

Tractability

- Polynomial total time *(succeed but don’t know how)*
- Incremental Polynomial Time *(harder as the number of generated solutions increases)*
- Polynomial delay *(regular process)*
Example

- Generate all models of a propositional formula (hum... intractable)
- Generate all independent sets of maximum size of a graph (intractable)
- Generate all maximal (for inclusion) independent sets
 - polynomial delay for lexicographic ordering
 - intractable for reverse lexicographic ordering
- Generate all models of a 2-CNF propositional formula (polynomial delay)
Let φ be a formula with variables x_1, \ldots, x_n.

- If $\varphi \land \neg x_1 \in SAT$: enumerate all solutions of $\varphi \land \neg x_1$
- If $\varphi \land x_1 \in SAT$: enumerate all solutions of $\varphi \land x_1$

Theorem (Creignou, Hebrard’97)

In the Boolean case, there is no other efficient algorithm than the one described above. Consequently, easy (i.e. polynomial delay) cases are Horn, Anti-Horn, 2-CNF and affine.

Schnoor & Schnoor’07 The situation is more complex for CSP on arbitrary finite domain

See also Bulatov, Dalmau, Grohe & Marx’10
Enumeration algorithm: some precision

Algorithms in two steps: + \{
- Precomputation step
- Enumeration step(s)

- Computation models (in this talk): RAM with uniform cost (but with bounded values in registers)
- Let A be an enumeration algorithm for $\text{ENUM}(R)$ and $x \in I$.
 - $time_i(x)$ denotes the time when the algorithm finishes to write the ith solution if it exists.
 - $delay_i(x) = time_{i+1}(x) - time_i(x)$.

Delay may be: sub-exponential, polynomial, linear, constant (?)

Warning: space is an important factor!
An enumeration algorithm \mathcal{A} is *constant delay* if there is a constant c such that for any $x \in I$ and i, $\text{delay}_i(x) \leq c$.

$\text{Enum}(R)$ is computable with constant delay ($\text{Enum}(R) \in \text{Constant-Delay}$) if there is a constant delay algorithm \mathcal{A} which computes $\text{Enum}(R)$.

$\text{Enum}(R) \in \text{Constant-Delay}_{\text{lin}}$ if it is reducible in linear time (in the input size) to a problem in Constant-Delay

precomputation \equiv reduction
Query problems

Query

- $\mathcal{L} = \text{set of formulas}$
- $\mathcal{S} = \text{set of (finite) structures}$

Enumeration problem

$\text{Enum}(\mathcal{L}, \mathcal{S})$

- **input:** $\phi \in \mathcal{L}$ and $A \in \mathcal{S}$
- **output:** enumerate $\phi(A) = \{\bar{a} \in D^k \mid (A, \bar{a}) \models \phi(\bar{x})\}$

Counting problem

$\text{Count}(\mathcal{L}, \mathcal{S})$

- **input:** $\phi \in \mathcal{L}$ and $A \in \mathcal{S}$
- **output:** $|\phi(A)| = |\{\bar{a} \in D^k \mid (A, \bar{a}) \models \phi(\bar{x})\}|$
Complexity Measures

Framework for complexity analysis of multi-parameterized problems

Parameters

A, ϕ (inputs)

$\phi(A)$

But also: number of free variables, of quantified variables, alternation, arity...

- $|A|$, $|\phi|$ and $|\phi(A)|$: **Combined Complexity**.
- $|A|$ and $|\phi(A)|$: **Data Complexity**
- $|\phi|$ and $|\phi(A)|$: **Expression Complexity**

Parameterized complexity: express the complexity in terms of $|A|$, $|\phi|$ and $|\phi(A)|$ but consider $|\phi|$ as a parameter.
Some tractable cases for enumeration

Data complexity

- **DEG_d^τ:** the class of τ-structures of maximal degree $\leq d$.
 $\text{Enum}(\text{fo}, \text{DEG}_d^\tau) \in \text{CONSTANT-DELAY}_\text{lin}$.
 (D. Grandjean'07, Lindell'08)

 Delay: triply exponential in the size of formula
 (Kazana, Segoufin'10)

- **TW_k^τ:** the class of τ-structures of treewidth at most k.
 $\text{Enum}(\text{mso}, \text{TW}_k^\tau) \in \text{LINEAR-DELAY}_\text{lin}$.
 (Bagan'06, Courcelle'07, Frick, ..)
Conjunctive Queries \(\text{(CQ)} \)

- \(\mathcal{L} \): \{∃, ∧\}-fragment of first-order logic i.e. formulas \(\varphi(\bar{x}) ≡ ∃\bar{y}\psi(\bar{x}, \bar{y}) \) where \(\psi \) is a conjunction of atoms.
- Combined complexity of model checking: \(\text{NP} \)-complete. No hope for enumeration.
- Tractable fragments for decision by restricting the formula (acyclicity, hypergraph decomposition methods).
The *hypergraph* of a formula φ is the hypergraph $H = (V, E)$ such that

- V is the set of variables of φ
- for each atom $R(\overline{v})$ of φ, we associate a hyperedge $\mathrm{var}(R(\overline{v}))$
Most general notion: α-acyclicity.

An hypergraph is α-acyclic if the application of the following rules as long as possible outputs the empty hypergraph:

1. Remove hyperedges contained in other hyperedges;
2. Remove vertices that appear in at most one hyperedge.

A conjunctive query is acyclic if its associated hypergraph is acyclic.
Acyclic hypergraph/query: examples

Large class of hypergraph/queries. Base case for more evolved decomposition methods.

Remark: Adding an edge to a cyclic hypergraph may result in an acyclic hypergraph.
A join tree of a hypergraph \(\mathcal{H} = (V, E) \) is a pair \((\mathcal{T}, \lambda)\) where \(\mathcal{T} = (V_T, T) \) is a tree and \(\lambda \) is a function from \(V_T \) to \(E \) such that:

- For each \(e \in E \), there is a \(t \in V_T \) such that \(\lambda(t) = e \) (each vertex of \(\mathcal{T} \) is a bag containing one edge)
- For each \(v \in V \), the set \(\{ t \in V_T : v \in \lambda(t) \} \) is a connected subtree of \(\mathcal{T} \).

Equivalent characterization: \(\mathcal{H} \) is acyclic iff it has a join tree.
Acyclic Hypergraph: alternative definition

I organize the edges of a graph into a "join tree"

a, b, c

I with a connectivity condition: edges that contain vertex v are connected in the tree

I acyclic hypergraph is acyclic if it has a join tree
Complexity of acyclic conjunctive queries

ACQ Acyclic Conjunctive Queries.

ACQ≠ Acyclic Conjunctive Queries with inequalities

Example:
\[
\varphi(x, y) \equiv \exists z \exists t \exists u (R_{xyz} \land R_{yzt} \land R_{ztu} \land S_{yt} \land x \neq u)
\]

Known results

ACQ solvable in \(O(|\varphi| \times |A| \times |\varphi(A)|)\) times (Yannakakis'81)

ACQ≠ solvable in \(O(2^{O(|\varphi|)} \times |A| \times |\varphi(A)| \times \log^2(|A|))\) times
(Papadimitriou & Yannakakis-99) or in \(O((|\varphi|!) \times |A| \times |\varphi(A)|)\) (Bagan-D.-Grandjean-07)
Yannakakis algorithm

Input: \((\mathcal{A}, \varphi)\), a tree decomposition \(T\)
- Take a leaf \(t \in V_T\), let \(R(\bar{x}, \bar{z})\)
 the associated atom.
- Take its father associated to
 \(S(\bar{x}, \bar{y})\) \((\{\bar{y}\} \cap \{\bar{z}\} = \emptyset)\)

Filter relation \(S\) in \(\mathcal{A}\) by relation \(R\):

\[
S := \{(\bar{a}, \bar{b}) \in S \text{ and } \exists \bar{c}(\bar{a}, \bar{c}) \in R\}
\]
Yannakakis algorithm

Input: \((\mathcal{A}, \varphi)\), a tree decomposition \(T\)

- Take a leaf \(t \in V_T\), let \(R(\bar{x}, \bar{z})\) the associated atom.
- Take its father associated to \(S(\bar{x}, \bar{y})\) \(\{\bar{y}\} \cap \{\bar{z}\} = \emptyset\)

Filter relation \(S\) in \(\mathcal{A}\) by relation \(R\):

\[
S := \{(\bar{a}, \bar{b}) \in S \text{ and } \exists \bar{c}(\bar{a}, \bar{c}) \in R\}
\]

Continue bottom up with new data and drop \(R(\bar{x}, \bar{z})\) from the list of atoms.
Enumeration of ACQ

Enumeration

Can we enumerate the results efficiently?

Easy but not that fast!

- let $\varphi'(x_1) \equiv \exists x_2 \ldots \exists x_k \exists \bar{y} \varphi(\bar{x}, \bar{y})$
- For $a \in \text{ENUM}(\varphi', A)$
 - let $\varphi_a \equiv \varphi(a, x_2, \ldots, x_k, \bar{y})$
 - For $\bar{b} \in \text{ENUM}(\varphi_a, A)$: output (a, \bar{b})

Linear $O(|\varphi| \times |A|)$ delay.
Similarities with the SAT enumeration in easy cases.
Easy and fast if all variables are free (i.e. participate to the result).

- Compute a tree decomposition
- Filter each parent with its children so that only tuples that can be extended to a solution remain ("local" consistency)
- Run through the tree and output the solutions

Linear $O(|\varphi| \times |\mathcal{A}|)$ precomputation and constant $O(|\varphi|)$ delay. Works also with disequalities (but delay exponential in $|\varphi|$)
What's the point with enumeration

Tree decomposition T for φ

- Blue boxes: quantified variables only
- Yellow boxes: free variables only
- In real life: green boxes also...

Good situation
What’s the point with enumeration

Tree decomposition T for φ

- Blue boxes: quantified variables only
- Yellow boxes: free variables only
- In real life: green boxes also...

Bad situation
Further question

- Can we do better than linear delay (with linear precomputation)?
- Can we find other fragments with constant delay?
- Can we fully characterize the enumeration complexity of acyclic conjunctive queries?
Let \(H = (V, E) \) be an acyclic hypergraph and \(S \subseteq V \).

\(H \) is \textit{S-connex acyclic} if there is an acyclic hypergraph \(H' = (V, E') \) and a tree-structure \(T \) of \(H' \) such that:

1. \(E \subseteq E' \)
2. \(\forall e' \in E' \exists e \in E : e' \subseteq e \) (\(H' \) inclusive extension of \(H \))
3. there is a connex subset \(A \) of vertices of \(T \) such that \(\bigcup_{t \in A} \lambda(t) = S \)

A formula \(\varphi \) is \textit{free-connex acyclic} or \textit{CCQ\neg} if its hypergraph is free(\(\varphi \))-connex acyclic.
Example of S-connex acyclic hypergraph

Let $H = (V, E)$ with $V = \{a, b, c, d, e, f\}$ and $E = \{\{a, b, c\}, \{c, d, e\}, \{c, d, f\}\}$ and $S = \{b, c, d\}$.
Let $H = (V, E)$ be a hypergraph and $S \subseteq V$. An S-path is a path (x, y_1, \ldots, y_n, z) of size at least 2 such that

- $x \in S$, $z \in S$
- for any i, $y_i \notin S$
- there is no hyperedge $e \in E$ such that $x, z \in e$

Lemma

H is S-connex acyclic iff H is acyclic and doesn't admit any S-path. This property can be checked in polynomial time.

Free-connex acyclicity: ”being grouped” up to hypergraph padding
Matrix Product Enumeration
Given two matrices A and B (with coefficients in some space),
- enumerate all $C_{i,j}$ or
- enumerate the indices (i,j) of $C = A \times B$ such that $C_{i,j} \neq 0$.

Boolean case: solutions of

$$
\Phi(x, z) \equiv \exists y \ E(x, y) \land E(y, z).
$$
Theorem: Let φ be a simple ACQ (resp. ACQ\neq) formula and assume that the boolean matrix product cannot be done in linear time. Then one of the two following cases hold:

- φ is free-connex acyclic
- $\texttt{Enum}(\varphi) \in \texttt{Constant-Delay}_\text{lin}$
- $\texttt{Eval}(\varphi)$ can be evaluated in time $O(|A| + |\varphi(A)|)$

or

- φ is not free-connex acyclic
- $\texttt{Enum}(\varphi) \notin \texttt{Constant-Delay}_\text{lin}$
- $\texttt{Eval}(\varphi)$ cannot be evaluated in time $O(|A| + |\varphi(A)|)$
Proof of hardness

φ ∈ ACQ − CCQ i.e., acyclic but not free(φ)-connex.

Main steps :

▶ Find a S-path (recall : $S = \text{free}(\varphi)$)

▶ From two boolean matrices, A and B construct a structure A, in linear time, such that:

 ▶ A encodes A and B.
 ▶ Data for A and B are on each side of the S-path
 ▶ indices of non zero coefficients of $A \times B$ are (pairs of) vertices related in the path.

Some problems to solve : the path may be arbitrary, there are other ”parts” in the query, ...
Proof of hardness

\(\varphi \in \text{ACQ} - \text{CCQ} \) i.e., acyclic but not free-connex.

\(H_\varphi \) admits a chordless \(S \)-path \(P = (x, z_1, \ldots, z_k, y) \) with \(k \geq 1 \), so that

- \(P \) is a path: there are \(k + 1 \) hyperedges \(e_0, e_1, \ldots, e_{k-1}, e_k \in E \) that contain \(e'_0 = \{x, z_1\}, e'_1 = \{z_1, z_2\}, \ldots, e'_{k-1} = \{z_{k-1}, z_k\}, e'_k = \{z_k, y\} \)
- \(P \) is an \(S \)-path: \(x, y \in S \) and \(z_1, \ldots, z_{k-1} \notin S \)
- \(P \) is chordless: for each \(e \in E, |e \cap P| \leq 1 \) or \(|e \cap P| = e'_i \) for some \(i, (0 \leq i \leq k) \)
Proof of hardness

ϕ simple formula ϕ of the form:

\[\varphi(x, y, \bar{t}) \equiv \exists z_1 \ldots \exists z_k \exists \bar{u} \psi(x, y, \bar{z}, \bar{t}, \bar{u}) \]

with ψ conjunction of atoms \(A_e, e \in E \) of the following form\((\bar{v} \subseteq \{\bar{t}, \bar{u}\}) \):

1. \(R_e(x, z_1, \bar{v}) \)
2. \(R_e(z_k, y, \bar{v}) \)
3. \(R_e(z_i, z_{i+1}, \bar{v}) \) where \(1 \leq i < k \)
4. \(R_e(w, \bar{v}) \) where \(w \in \{x, y, z_1, \ldots, z_k\} \)
5. \(R_e(\bar{v}) \)

Arnaud Durand

enumeration and counting for acyclic conjunctive queries
Proof of hardness

Transformation r of the structure: to each σ_{AB}-structure $\mathcal{A} = (D, A, B)$ associates the following $\mathcal{A'}$:

- $\mathcal{A'} = (D', (R_e)_{e \in E})$
- $D' = D \cup \{\bot\}$: here \bot is a new special "padding" symbol
- For each $e \in E$ define the relation of arity p, R_e according to the form of its (unique) occurrence in φ
 1. $R_e = A \times \{\bot\}^{p-2}$
 2. $R_e = B \times \{\bot\}^{p-2}$
 3. $R_e = I \times \{\bot\}^{p-2}$ where I is the identity (equality) relation of D ($I = \{(a, a) : a \in D\}$)
 4. $R_e = D \times \{\bot\}^{p-1}$
 5. $R_e = \{\bot\}^p$
Proof of hardness

\[\Pi(A) = A \times B \]

Fact 1: The map \(r : A \rightarrow A' \) is computable in time \(O(|A|) \)

Fact 2: \(\varphi'(A') = \Pi(A) \times \{\bot\}^m \)

Fact 3: The projection \((a, b, \bar{c}) \rightarrow (a, b) \) is a one-one mapping from \(\varphi(A') \) onto \(\Pi(A) \)
Conclusion for enumeration

- Preceding result shows some dichotomy in the complexity of enumeration (not in the same sense as usual dichotomy results in complexity).
- Dichotomy distinguishes tractable and very tractable cases.
- Dichotomy based on positions of free variables in the formula.
Here, situation differs more drastically if quantified variables are allowed.

Theorem (Pichler, Skritek’11)

- If only quantifier free formulas are authorized as inputs, then \#ACQ is computable in polynomial time.
- \#ACQ is \#P-complete even for formulas with only one existentially quantified variable.

Hardness result (interpretation)

Given bipartite graph \(G \), one construct a structure \(A_G \) and an acyclic conjunctive formula \(\varphi_G(\bar{x}) = \exists y \phi(\bar{x}, y) \) such that:

The number of perfect matching in \(G = |\varphi_G(A_G)| \)
End of the story for \#ACQ?

- What about weighted counting for ACQ?
- Hardness or tractability for counting the disjunction (or conjunction) of, say, two ACQ?
- One quantifier is enough to design hard instance but is that all we can say?
- Can we isolate island of tractability for \#ACQ with quantified variables? or better chart the tractability frontier for quantified \#ACQ?
Weighted counting

- \(\mathbb{F} \): ring with operations \(+\) and \(\times\)
- \(S \): finite structure of domain \(D\)
- \(\mathbb{F} \)-weight function for \(S\): mapping \(w : D \rightarrow \mathbb{F}\)
- If \(\bar{a} \in D^k\), the weight of \(\bar{a}\) is

\[
 w(\bar{a}) = \prod_{i=1}^{k} w(a_i).
\]

\(\#_{\mathbb{F}CQ}\) (resp. \(\#_{\mathbb{F}ACQ}\))

Input: A conjunctive query (resp. acyclic) \(\Phi = (S, \phi)\) and an \(\mathbb{F}\)-weighted function \(w\)

Output: \(\sum_{\bar{a} \in \phi(S)} w(\bar{a})\).

When \(w\) is the constant function 1, this value is equal to \(|\phi(S)|\).
What is the complexity of \(\#_{\mathcal{FACQ}} \) for quantifier free formulas?
Either in terms of number of symbolic operation or in number of bits (for spaces where iterated multiplication and addition is polynomial time)

Strategy

- Consider query instances as polynomials
- Construct efficiently *arithmetic circuits* that ”recognize” these polynomials
- Evaluate the polynomial to solve the weighted counting problem
Arithmetic circuits

Arithmetic circuit over \mathbb{F}

- Labeled directed acyclic graph (DAG) with vertices (*gates*) with indegree (*fanin*) 0 or 2.
- **Input gates** have fanin 0 and are labeled with constants from \mathbb{F} or variables X_1, X_2, \ldots, X_n.
- **Computation gates** have fanin 2 and are labeled with \times or \pm.
- One gate with fanout 0: the **output gate**
- The **size** of the circuit is the number of gates
- The **depth** is the length of the longest path from an input gate to the output gate
Arithmetic circuit: example

\[P(X_1, X_2) = 2X_1X_2 + (X_1 + X_2)X_2 = 3X_1X_2 + X_2^2 \]
A circuit is *multiplicatively disjoint* if, for each \times-gate, its two input subcircuits are disjoint.
Valiant’s setting for computation of families of polynomials by families of circuits.

Same computational power

- polynomial size circuits of polynomial degree
- multiplicatively disjoint circuits
- logarithmic depth semi-unbounded circuits.

Algebraic equivalent of **LOGCFL**...

See: Valiant, Burgisser, Koiran, Malod, ...
Q-Polynomials

$\Phi = (S, \phi)$: conjunctive query with domain D. The following polynomial $Q(\Phi)$ in the variables $\{X_d \mid d \in D\}$ is assigned to Φ:

$$Q(\Phi) := \sum_{a \in \phi(S)} \prod_{x \in \text{var}(\phi)} X_{a(x)} = \sum_{a \in \phi(S)} \prod_{d \in D} X_{d}^{\mu_{d}(a)},$$

where $\mu_{d}(a) = |\{x \in \text{var}(\phi) \mid a(x) = d\}|$ is the number of variables mapped to d by a.

Example

$\Phi = (S, \phi)$ such that

$\phi(S) = \{(1, 3, 2, 5), (1, 2, 1, 3), (5, 2, 3, 1), (1, 1, 2, 1), (4, 2, 1, 2)\}$.

Then:

$$Q(\Phi) := 2X_{1}X_{2}X_{3}X_{5} + X_{1}^{2}X_{2}X_{3} + X_{1}^{3}X_{2} + X_{2}^{2}X_{1}X_{4}.$$
Polynomials representing queries

- The number of variables in $Q(\Phi)$ is $|D|$, the size of the domain of S
- $Q(\Phi)$ is homogeneous of degree $|\text{free}(\Phi)|$
- No bijective correspondence between solutions of the query and monomials
- Existential quantification in formulas does not correspond to projection on some polynomial variable.
Here and after: joint work with Stefan Mengel.

\[\| \Phi \| = |S| + |\phi| \]

Theorem

Given an acyclic quantifier free conjunctive query \(\Phi = (S, \phi) \), *we can in time polynomial in* \(\| \Phi \| \) *compute a multiplicatively disjoint arithmetic circuit* \(C \) *that computes* \(Q(\Phi) \).

Corollary

The problem \(\text{\#FACQ} \) *is computable in polynomial time*
Computation of $Q(\Phi)$ for Φ acyclic: proof

By induction, adapting Yannakakis algorithms for ACQ

- $\Phi = (S, \phi)$: the input
- (\mathcal{T}, λ): the join tree associated with ϕ
- For $t \in V_\mathcal{T}$, ϕ_t: conjunction of constraints corresponding to the subtree \mathcal{T}_t rooted at t
- Set $e_t = \text{var}(\phi_t) = \bigcup_{t' \in \mathcal{T}_t} \text{var}(\lambda(t'))$
Compute the more general polynomial:

\[f_{t,\bar{a},c} = \sum_{\bar{\alpha} \in \phi_t(S)} \prod_{x \in c} X_{\alpha(x)}. \]

Where \(c \subseteq \lambda(t) \), \(\bar{a} \) is an assignment of some variable of \(\phi \) and \(\bar{\alpha} \sim \bar{a} \) means ”\(\bar{\alpha} \) agrees with \(\bar{a} \) on common variables”.

Strategy and Problems

- Compute inductively from some \(f_{t_i,\bar{a}_i,c_i} \) where \(t_i \) is a child of \(t \).
- If two children share a variable there is a risk of overcounting so...
- Partition the variables in \(\lambda(t) \) and assign parts to children
Computation of $Q(\Phi)$ for Φ acyclic: proof

- The case of a leaf $t \in V_T$ is immediate.
- Let $t \in V_T$ and t_1, \ldots, t_k its children in V_T
- c_0, c_1, \ldots, c_k: partition of c into disjoint sets such that $c_i \subseteq e_i \cap c$, for $i = 1, \ldots, k$ and $c_0 \subseteq c \setminus \bigcup_{i=1}^k e_{t_i}$

$$f_{t, \bar{a}, c} = \sum_{\bar{\alpha} \in \phi_t(S)} \prod_{x \in c} X_{\alpha}(x)$$

$$= \sum_{\bar{\alpha} \in \phi_t(S)} \prod_{x \in c_1} X_{\bar{\alpha}}(x) \cdots \prod_{x \in c_k} X_{\bar{\alpha}}(x) \prod_{x \in c_0} X_{\bar{\alpha}}(x)$$
Computation of $Q(\Phi)$ for Φ acyclic: proof

Last remark

- Let $A_t = ((\lambda_t(S) \times \phi_{t_1}(S)) \times \phi_{t_2}(S)) \times \ldots \times \phi_{t_k}(S)$.
- Each solution $\bar{\alpha} \in \phi_t(S)$ can be uniquely expressed as the natural join of a $\bar{\beta} \in A_t$ with some $\bar{\alpha}_i \in \phi_{t_i}(S)$, $i = 1, \ldots, k$, compatible with β (converse also true)

$$f_{t,\bar{a},c} = \sum_{\bar{\alpha} \in \phi_t(S)} \prod_{x \in c_1} X_{\bar{\alpha}(x)} \cdot \prod_{x \in c_k} X_{\bar{\alpha}(x)} \prod_{x \in c_0} X_{\bar{\alpha}(x)}$$

$$= \sum_{\bar{\beta} \in A_t} \sum_{\bar{\alpha}_1 \in \phi_{t_1}(S)} \ldots \sum_{\bar{\alpha}_k \in \phi_{t_k}(S)} \prod_{x \in c_1} X_{\bar{\alpha}_1(x)} \cdot \prod_{x \in c_k} X_{\bar{\alpha}_k(x)} \prod_{x \in c_0} X_{\bar{\beta}(x)}$$

$$= \sum_{\bar{\beta} \in A_t} f_{t_1,\bar{\beta},c_1} \cdot \ldots \cdot f_{t_k,\bar{\beta},c_k} \cdot \prod_{x \in c_0} X_{\bar{\beta}(x)}$$
Theorem
Computing the size of the union and the intersection of query results to two quantifier free $\#\text{ACQ}$-instances are both $\#\text{P}$-complete. This result remains true for $\#\text{ACQ}$ on boolean domain and arity at most 3.

Proof by chain of reductions

- $\#\text{circuitSAT}$
- $\#(\land-\neg\text{-grid})\text{-circuitSAT}$: circuit sat with \land and \neg gate on a grid.
- $\#\text{CQ}$ on a grid
Pause to ponder

Bad news

- The conjunction (or disjunction) of two ACQ makes counting hard
- Idem for ACQ for one existentially quantified variable.

But... formula in Pichler and Skritek’s hardness proof looks like that:

Is it a sign of hardness?
S-components

A hypergraph $\mathcal{H} = (V, E)$ and $S \subseteq V$.
Let $E_{\not\subseteq S} = \{e \in E : e \not\subseteq S\}$.

S-component

The *S-component* of $e \in E_{\not\subseteq S}$ is the hypergraph $\mathcal{H}[E']$ where E' is the set of all edges $e' \in E_{\not\subseteq S}$ such that there is a path from $e - S$ to $e' - S$ in $\mathcal{H}[V - S]$.
A subhypergraph \mathcal{H}' of \mathcal{H} is an *S-component* if there is an edge $e \in E_{\not\subseteq S}$ such that \mathcal{H}' is the *S-component* of e.
Decomposition into S-components: example

S vertices in red
Decomposition into S-components: example

S vertices in red
Definition (*S*-k-star, *S*-star size)

Let $\mathcal{H} = (V, E)$ be a hypergraph, $S \subseteq V$ and $k \in \mathbb{N}$. The subhypergraph $\mathcal{H}' = (V', E')$ of \mathcal{H} is a *S*-k-star if:

- \mathcal{H}' is an S-component of \mathcal{H}.
- there exist $y_1, \ldots, y_k \in V' \cap S$ such that there is no edge $e \in E$ that contains more than one of the y_i.

y_1, \ldots, y_k are ”independant” and form the *S*-k-star.

The *S*-star size of \mathcal{H} is the maximum k such that there is a *S*-k-star in \mathcal{H}.
S-star size : example

S-star size is 4
Quantified star size

The *quantified star size* of an acyclic conjunctive formula $\phi(\bar{x})$ is the S-star size of the hypergraph \mathcal{H} associated to $\phi(\bar{x})$, where S is the set of free variables in $\phi(\bar{x})$.
Formula $\phi(x, y) \equiv \exists t \exists z R(x, y, t) \land S(x, z, t)$

Quantified star size $= 1$

Path formulas (of arbitrary length), e.g.
$\phi(x, y, z) \equiv \exists t_1 \exists t_2 R(x, t_1) \land R(t_1, z) \land R(z, t_2) \land R(t_2, y)$

Quantified star size $= 2$.

Star formulas, e.g.
$\phi(x, y, z, t) \equiv \exists u R(u, x) \land R(u, y) \land R(u, z) \land R(u, t)$

Quantified star size $=$ degree of the center of the star (here 4).
Query evaluation is easy

Theorem
There is an algorithm that given an acyclic conjunctive query Φ computes an arithmetic circuit C that computes $Q(\Phi)$. The runtime of the algorithm is $\|\Phi\|^{O(k)}$ where k is the quantified star size of Φ.

Corollary
There is an algorithm for the problem $\#\text{ACQ}$ that runs in time $\|\Phi\|^{O(k)}$ where k is the quantified star size of the input query Φ.
Some remarks on the proof

Star size expresses how pieces of the result are spread

- Computation of the result is made component by component
- For each component, if quantified-star size is k and $R_1(\bar{z}_1), \ldots, R_k(\bar{z}_k)$ atoms of ϕ containing all free variables of ϕ, one needs to pre-compute all k-tuples $ar{a}_1 \in R_1, \ldots, \bar{a}_k \in R_k$

and check if they lead to a solution of $\phi(S)$ (by the method for $Q(\Phi)$ when Φ acyclic and quantified free)
Computing S-star is easy

Theorem

There is a polynomial time algorithm that, given a hypergraph $\mathcal{H} = (V, E)$ and $S \subseteq V$, computes the S-star size of \mathcal{H}.

Proof

Equivalent to finding a maximal independant set (and a minimal edge cover) in an acyclic hypergraph.

Ad hoc algorithm.

Conclusion: Classes of $\#ACQ$-instances of bounded quantified star size are efficiently decidable.
Parametrizations of $\#ACQ$

- p-\star-$\#ACQ$: counting parameterized by the quantified star size,
- p-var-$\#ACQ$: counting parameterized by the number of free variables,
- p-$\#ACQ$: counting parameterized by the size of the conjunctive formula.

Lemma

p-\star-$\#ACQ$, p-var-$\#ACQ$ and p-$\#ACQ$ are all $\#W[1]$-hard.
Bounded quantified star size is necessary

\(S \)-hypergraph: pair \((\mathcal{H}, S)\) where \(\mathcal{H} = (V, E) \) is a hypergraph and \(S \subseteq V \).

Definition

\#ACQ is tractable for a class \(\mathcal{G} \) of \(S \)-hypergraphs if for all \#ACQ instances \(\Phi \) with the associated hypergraph \(\mathcal{H} \) of \(\Phi \) and the set \(S \) of free variables of \(\Phi \) with \((\mathcal{H}, S) \in \mathcal{G}\) we can solve \#ACQ in polynomial time.
Bounded quantified star size is necessary

Theorem
Assume $\text{FPT} \neq \#\text{W}[1]$, and let \mathcal{G} be a recursively enumerable class of acyclic S-hypergraphs. Then $\#\text{ACQ}$ is polynomial time solvable for \mathcal{G} if and only if \mathcal{G} is of bounded S-star size.
Proof sketch

First prove that $\#\text{ACQ}$ is hard on \mathcal{G}_S the class of k-stars (in the graph sense)

Consider an instance $\Phi = (A, \varphi(\bar{x}))$ with

$$\varphi(\bar{x}) = \exists y \wedge_{i=1}^{k} R_i(y, x_i)$$

Suppose there is a class \mathcal{G} of unbounded S-star size which is tractable.

Embed efficiently Φ into a suitable instance (with big enough star) Ψ whose associated hypergraph is in \mathcal{G}.

Deduce that $\#\text{ACQ}$ is not hard on \mathcal{G}_S.

Arnaud Durand
enumeration and counting for acyclic conjunctive queries
Conclusion

- Complete characterization of tractability frontier for \(\#ACQ \)
- Easy evaluation for counting on bounded \(S \)-star size extend to generalized hypertree width
- \(S-k \)-star size recognition seem to depend on \(k \) for some decomposition