The Complexity of Query Answering in Inconsistent Databases

Phokion G. Kolaitis

UC Santa Cruz and IBM Research - Almaden

Syntax and Semantics - INI
April 2012
In 1970, Edgar (Tedd) F. Codd introduced the relational data model.

Since that time, there has been a continuous and extensive interaction between logic and databases.

Two main uses of logic in databases:

- Logic is used as a database query language.
- Logic is used to specify integrity constraints in databases.
The Relational Data Model

- **Relational Database**
 - Collection \((R_1, \ldots, R_m)\) of finite relations (tables).
 - Relational structure \(A = (A, R_1, \ldots, R_m)\).
 In relational databases, the universe is not made explicit. Typically, one works with the active domain of the database.

- **Relational Query Languages**
 - **Relational Algebra:** Operations \(\pi, \sigma, \times, \cup, \setminus\)
 - **Relational Calculus:** (Safe) First-Order Logic
 - **SQL:** The standard commercial database query language based on relational algebra and relational calculus.
Conjunctive Queries

Definition

A conjunctive query is a query specified by a first-order formula of the form

$$\exists y_1 \cdots \exists y_m \varphi(x_1, \ldots, x_n, y_1, \ldots, y_m),$$

where $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is a conjunction of atoms.

Example

- Path-of-Length-3(x_1, x_2):
 $$\exists y_1 \exists y_2 (E(x_1, y_1) \land E(y_1, y_2) \land E(y_2, x_2))$$

- SAME-MANAGER(x_1, x_2):
 $$\exists y (\text{MANAGES}(y, x_1) \land \text{MANAGES}(y, x_2)).$$
Conjunctive Queries

Fact:

- Conjunctive queries are among the most frequently asked queries against databases.
- SQL provides direct support for expressing conjunctive queries via the SELECT ... FROM ... WHERE ... construct.

Example

- Given relation MANAGER(manager,employee)
- SQL expression for SAME-MANAGER:

  ```sql
  SELECT R.employee, S.employee
  FROM MANAGES AS R, MANAGES AS S,
  WHERE R.manager = S.manager
  ```
Integrity Constraints in Relational Databases

Extensive study of various types of integrity constraints in relational databases during the 1970s and early 1980s:

- Key constraints and functional dependencies
- Inclusion dependencies, join dependencies, multi-valued dependencies, ...

Eventually, it was realized that all these different types of dependencies can be specified in fragments of first-order logic.
Two Unifying Classes of Integrity Constraints

Definition

- **Equality-generating dependency (egd):**
 \[\forall x (\phi(x) \rightarrow x_i = x_j), \]
 where \(\phi(x) \) is a conjunction of atoms.

 Special Cases: Key constraints, functional dependencies.

- **Tuple-generating dependency (tgd):**
 \[\forall x (\phi(x) \rightarrow \exists y \psi(x, y)), \]
 where \(\phi(x) \) is a conjunction of atoms with vars. in \(x \), and \(\psi(x, y) \) is a conjunction of atoms with vars. in \(x \) and \(y \).

 Special Cases: LAV constraints and GAV constraints.

Note: Extensive study of egds and tgds in the context of data integration and data exchange during the past decade.
Example

- \(\forall x, y, z, w (R(x, y, z) \land R(x, y, w) \rightarrow z = w) \)
 - A key constraint written as an egd.

- \(\forall x, y (P(x, y) \rightarrow \exists z Q(z, x)) \)
 - An inclusion dependency written as a tgd.

- \(\forall x, y, z (T(x, y) \land T(y, z) \rightarrow T(x, z)) \)
 - Transitivity is specified by a tgd

- \(\forall x, y (E(x, y) \rightarrow \exists z (F(x, z) \land F(z, y))) \)
 - A tgd that “transforms” edges to paths of length 2
LAV and GAV Constraints

Definition

- **LAV (Local-As-View) Constraint**: A tgd of the form
 \[\forall x (R(x) \rightarrow \exists y \psi(x, y)) \]
 where \(R(x) \) is a single atom.

- **GAV (Global-As-View) Constraint**: A tgd of the form
 \[\forall x (\phi(x) \rightarrow T(x')) \]
 where \(T(x') \) is a single atom and \(x' \subseteq x \).
Examples of LAV and GAV Constraints

Example

(dropping universal quantifiers)

- LAV and GAV constraint:
 \[(\text{SIBLING}(x, y) \rightarrow \text{SIBLING}(y, x))\]

- LAV and inclusion dependency:
 \[(\text{PERSON}(x) \rightarrow \exists z \text{MOTHER}(z, x))\]

- LAV but not an inclusion dependency:
 \[(\text{SIBLING}(x, y) \rightarrow \exists z (\text{MOTHER}(z, x) \land \text{MOTHER}(z, y)))\]

- GAV constraint:
 \[(\text{MOTHER}(z, x) \land \text{MOTHER}(z, y) \rightarrow \text{SIBLING}(x, y))\]
In designing databases, one specifies a schema S and a set of integrity constraints Σ on S.

An inconsistent database is a database I that does not satisfy Σ.

Inconsistent databases arise in a variety of contexts and for different reasons:

- For lack of support of particular integrity constraints.
- In data integration of heterogeneous data obeying different integrity constraints.
- In data warehousing and in Extract-Transform-Load (ETL) applications, where data has to be “cleaned” before it can be processed.
Coping with Inconsistent Databases

Two different approaches:

- **Data Cleaning**: Based on heuristics or specific domain knowledge, the inconsistent database is transformed to a consistent one by modifying (adding, deleting, updating) tuples in relations.
 - This is the prevailing approach in industry.
 - More engineering than science as quite often arbitrary choices have to be made.
Coping with Inconsistent Databases

Two different approaches:

- **Data Cleaning**: Based on heuristics or specific domain knowledge, the inconsistent database is transformed to a consistent one by modifying (adding, deleting, updating) tuples in relations.
 - This is the prevailing approach in industry.
 - More engineering than science as quite often arbitrary choices have to be made.

- **Database Repairs**: A framework for coping with inconsistent databases in a principled way and without “cleaning” dirty data first.
Definition (Arenas, Bertossi, Chomicki – 1999)

\[\Sigma \] a set of integrity constraints and \(I \) an inconsistent database. A database \(J \) is a \textit{repair} of \(I \) w.r.t. \(\Sigma \) if

- \(J \) is a consistent database (i.e., \(J \models \Sigma \));
- \(J \) differs from \(I \) in a \textit{minimal} way.
Definition (Arenas, Bertossi, Chomicki – 1999)

Σ a set of integrity constraints and I an inconsistent database. A database J is a repair of I w.r.t. Σ if

- J is a consistent database (i.e., $J \models \Sigma$);
- J differs from I in a minimal way.

Fact

Several different types of repairs have been considered:

- Set-based repairs;
- Cardinality-based repairs;
- Attribute-based repairs.
Set-Based Repairs

Definition

\(\Sigma \) a set of integrity constraints and \(I \) an inconsistent database.

- \(J \) is a \(\oplus\)-repair of \(I \) w.r.t. \(\Sigma \) if \(J \models \Sigma \) and there is no \(J' \) such that \(J' \models \Sigma \) and \(I \oplus J' \subset I \oplus J \).

- \(J \) is a **subset-repair** of \(I \) w.r.t. \(\Sigma \) if \(J \) is a \(\oplus\)-repair of \(I \) such that \(J \subseteq I \).

 In other words, \(J \subset I \), \(J \models \Sigma \), and there is no \(J' \) such that \(J' \models \Sigma \) and \(J \subset J' \subset I \).

- \(J \) is a **superset-repair** of \(I \) w.r.t. \(\Sigma \) if \(J \) is a \(\oplus\)-repair of \(I \) such that \(I \subseteq J \).

 In other words, \(I \subset J \), \(J \models \Sigma \), and there is no \(J' \) such that \(J' \models \Sigma \) and \(I \subset J' \subset J \).
Example

Relation schema R, instance $I = \{ R(a, b), R(a, c), R(b, c) \}$

- $\Sigma = \{ \forall x \forall y \forall z ((R(x, y) \land R(x, z) \rightarrow y = z) \}$

I has two \oplus-repairs (and subset repairs) w.r.t. Σ:

- $J_1 = \{ R(a, b), R(b, c) \}$
- $J_2 = \{ R(a, c), R(b, c) \}$.

$\Sigma' = \{ \forall x \forall y (R(x, y) \rightarrow R(y, x)) \}$

I has eight \oplus-repairs w.r.t. Σ':

- $J_1 = \emptyset$ (also a subset repair)
- $J_2 = \{ R(a, b), R(b, a) \}$ (neither a subset, nor a superset repair)
- $J_3 = \{ R(a, b), R(b, a), R(a, c), R(c, a), R(b, c), R(c, b) \}$ (also a superset repair).

... Exponentially many repairs, in general.
Example

Relation schema R, instance $I = \{ R(a, b), R(a, c), R(b, c) \}$

- $\Sigma = \{ \forall x \forall y \forall z ((R(x, y) \land R(x, z) \rightarrow y = z) \}$
 - I has two \oplus-repairs (and subset repairs) w.r.t. Σ:
 - $J_1 = \{ R(a, b), R(b, c) \}$
 - $J_2 = \{ R(a, c), R(b, c) \}$.

- $\Sigma' = \{ \forall x \forall y (R(x, y) \rightarrow R(y, x)) \}$
 - I has eight \oplus-repairs w.r.t. Σ':
 - $J_1 = \emptyset$ (also a subset repair)
 - $J_2 = \{ R(a, b), R(b, a) \}$
 (neither a subset, nor a superset repair)
 - $J_3 = \{ R(a, b), R(b, a), R(a, c), R(c, a), R(b, c), R(c, b) \}$
 (also a superset repair).
 - \ldots

Exponentially many repairs, in general.
Query Answering over Inconsistent Databases

Definition (Arenas, Bertossi, Chomicki)

Let Σ be a set of integrity constraints, q a query, I an instance, and $\ast \in \{\oplus, \text{subset}, \text{superset}\}$. The \ast-consistent answers of q on I w.r.t. Σ is the set

$$\ast\text{-Con}(q, I, \Sigma) = \bigcap \{ q(J) : J \text{ is a } \ast\text{-repair of } I \text{ w.r.t. } \Sigma \}.$$

Note

- The motivation comes from the semantics of queries in the context of incomplete information and possible worlds.
- The \ast-consistent answers of q in I are theCertain answers of q on I, when the set of all possible worlds is the set of all \ast-repairs of I w.r.t. Σ.

Example (Revisited)

Relation schema R, instance $I = \{ R(a, b), R(a, c), R(b, c) \}$,

$$\Sigma = \{ \forall x \forall y \forall z ((R(x, y) \land R(x, z) \rightarrow y = z) \}$$

Recall that I has two \oplus-repairs (and subset repairs) w.r.t. Σ:

$$J_1 = \{ R(a, b), R(b, c) \} \text{ and } J_2 = \{ R(a, c), R(b, c) \}.$$

- If $q(x)$ is the query $\exists y E(x, y)$, then
 $$\oplus\text{-Con}(q, I, \Sigma) = \{ a, b \}.$$

- If $q(x)$ is the query $\exists z E(z, x)$, then
 $$\oplus\text{-Con}(q, I, \Sigma) = \{ c \}.$$
Consistent Query Answering (CQA)

Main themes in investigation of CQA so far.

- **Complexity of CQA for conjunctive queries:**
 From polynomial-time computability to undecidability.

- **Prototype Systems:**
 - Hippo (Chomicki, Marcinkowski, Staworko - 2004)
 - ConQuer (Fuxman - 2007)
 - ConEx (Caniupan, Bertossi - 2010).

Note

For an overview, see the monograph *Database Repairing and Consistent Query Answering* by L. Bertossi, 2011.
Data Complexity of CQA

Definition

- Every fixed set Σ of constraints and every fixed conjunctive query q give rise to the following computational problem:

 Input: Instance I.
 Output: \ast-Con(q, I, Σ), where $\ast \in \{\oplus, \text{subset}, \text{superset}\}$.

- Let \mathcal{L} be a class of constraints and \mathcal{C} a complexity class.

 1. We say that the data complexity of \ast-CQA w.r.t. \mathcal{L} is in \mathcal{C} if \ast-Con(q, I, Σ) is in \mathcal{C}, for every finite subset Σ of \mathcal{L} and every conjunctive query q.

 2. We say that the data complexity of \ast-CQA w.r.t. \mathcal{L} is \mathcal{C}-complete if it is in \mathcal{C} and there are a finite subset Σ of \mathcal{L} and a conjunctive query q such that \ast-Con(q, I, Σ) is \mathcal{C}-complete.
Data Complexity of CQA for Conjunctive Queries

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Superset-CQA</th>
<th>Subset-CQA</th>
<th>⊕-CQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keys/egds</td>
<td>coNP-comp.</td>
<td>coNP-comp</td>
<td>coNP-comp.</td>
</tr>
<tr>
<td>LAV</td>
<td>PTIME</td>
<td>PTIME</td>
<td>PTIME</td>
</tr>
<tr>
<td>GAV†</td>
<td>PTIME</td>
<td>coNP-comp.</td>
<td>coNP-comp.</td>
</tr>
<tr>
<td>Weakly acyclic sets of tgds†</td>
<td>PTIME</td>
<td>Π₂-comp.</td>
<td>Π₂-comp.</td>
</tr>
<tr>
<td>Arbitrary tgds†</td>
<td>Undecidable</td>
<td>Π₂-comp.</td>
<td>Undecidable</td>
</tr>
</tbody>
</table>

Note:
- † indicates that the upper bound holds also in the presence of egds.
- Entries in blue indicate that this is a result in a recent paper by ten Cate, Fontaine, K ... 2012.
The Complexity of CQA

- The preceding results give a fairly comprehensive picture of the complexity of CQA for conjunctive queries and w.r.t. various types of constraints.

- However, these results fall short from yielding a complete classification of the complexity of CQA.

- The ultimate goal of this investigation is to prove or disprove that dichotomy and/or trichotomy theorems hold for the complexity of CQA.
Ladner’s Theorem and Dichotomies

Theorem (Ladner 1975): If $P \neq NP$, then there is a decision problem Q such that

1. Q is in NP, but not in P.
2. Q is not NP-complete.

Definition

We say that a *dichotomy theorem* holds for a collection \mathcal{F} of decision problems in NP if for every problem Q in \mathcal{F}, one of the following holds:

1. Q is in P.
2. Q is NP-complete.
Dichotomy Theorems and Conjectures

Dichotomy theorems tend to be rare and difficult to establish.

- Schaefer’s Dichotomy Theorem for Boolean Satisfiability (1978).
- Fortune-Hopcroft-Wyllie Dichotomy Theorem for the Directed Graph Homeomorphism Problem (1980).

...
Dichotomy Conjecture for CQA and Key Constraints

Conjecture

If Σ is a set of key constraints and q is a conjunctive query, then one of the following holds:

1. subset-$\text{Con}(q, I, \Sigma)$ is in P.
2. subset-$\text{Con}(q, I, \Sigma)$ is coNP-complete.

Note:

- To date, little progress has been made towards resolving this dichotomy conjecture.
- Conditions sufficient for tractability and also conditions sufficient for intractability have found.
- However, there is still a big gap remaining to be filled.
Binary relations R and S having the first attribute as key, i.e.,

$$\Sigma = \{ R(u, v) \land R(u, w) \rightarrow v = w, \ S(u, v) \land S(u, w) \rightarrow v = w \}.$$

- Let q_1 be the Boolean query $\exists x, y, z (R(x, y) \land S(y, z))$.
- Let q_2 be the Boolean query $\exists x, y (R(x, y) \land S(y, x))$.
- Let q_3 be the Boolean query $\exists x, y, z (R(x, y) \land S(z, y))$.

Question:
What can we say about subset-\(\text{Con}(q_i, I, \Sigma)\), where $i = 1, 2, 3$?
Binary relations R and S having the first attribute as key, i.e.,

$$\Sigma = \{ R(u, v) \land R(u, w) \rightarrow v = w, \ S(u, v) \land S(u, w) \rightarrow v = w \}.$$

- Let q_1 be the query $\exists x, y, z (R(x, y) \land S(y, z))$.
 Then subset-Con(q_1, I, Σ) is in P; in fact, subset-Con(q_1, I, Σ) is first-order rewritable.

- Let q_2 be the query $\exists x, y (R(x, y) \land S(y, x))$.
 Then subset-Con(q_2, I, Σ) is in P; however, subset-Con(q_2, I, Σ) is not first-order rewritable.

- Let q_3 be the query $\exists x, y, z (R(x, y) \land S(z, y))$.
 Then subset-Con(q_3, I, Σ) is coNP-complete.
Dichotomy Conjecture for CQA and Key Constraints

A very modest first step towards the Dichotomy Conjecture.

Theorem (K ... and Pema - 2012). Let q be a conjunctive query with exactly two atoms involving different relations R and S, and let Σ be a set consisting of a key constraint on R and a key constraint on S. Then one of the following holds:

1. $\text{subset-Con}(q, I, \Sigma)$ is in P.
2. $\text{subset-Con}(q, I, \Sigma)$ is coNP-complete.

Moreover, there is an effective criterion for determining which of the two holds.

Note:
The tractable case uses Minty’s polynomial-time algorithm for the maximal independent set on claw-free graphs.
Prove or disprove the following Trichotomy Conjecture.

Conjecture

Let \(\Sigma \) be a weakly acyclic set of tgds and let \(q \) be a conjunctive query. Then one of the following holds:

1. \(\oplus\text{-Con}(q, I, \Sigma) \) is in \(P \).
2. \(\oplus\text{-Con}(q, I, \Sigma) \) is coNP-complete.
3. \(\oplus\text{-Con}(q, I, \Sigma) \) is \(\Pi^p_2 \)-complete.